Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1991 Apr;35(4):760–763. doi: 10.1128/aac.35.4.760

Activities of various macrolide antibiotics against Mycobacterium leprae infection in mice.

R H Gelber 1, P Siu 1, M Tsang 1, L P Murray 1
PMCID: PMC245094  PMID: 1648889

Abstract

We evaluated the activities of several macrolide antibiotics against M. leprae infections in mouse footpads. Erythromycin and azithromycin were inactive, while both roxithromycin and clarithromycin were found to be consistently active and, in fact, bactericidal. By both methods, clarithromycin was found to be superior to roxithromycin, a finding which, at least in part, may be a consequence of the higher levels of clarithromycin at the site of infection.

Full text

PDF
760

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baker R. J. The need for new drugs in the treatment and control of leprosy. Int J Lepr Other Mycobact Dis. 1990 Mar;58(1):78–97. [PubMed] [Google Scholar]
  2. Barry A. L., Packer R. R. Roxithromycin bioassay procedures for human plasma, urine and milk specimens [corrected and issued with original paging in Eur J Clin Microbiol 1986 Dec;5(6)]. Eur J Clin Microbiol. 1986 Oct;5(5):536–540. doi: 10.1007/BF02017698. [DOI] [PubMed] [Google Scholar]
  3. Colston M. J., Hilson G. R., Banerjee D. K. The "proportional bactericidal test": a method for assessing bactericidal activity in drugs against Mycobacterium leprae in mice. Lepr Rev. 1978 Mar;49(1):7–15. [PubMed] [Google Scholar]
  4. Fernandes P. B., Bailer R., Swanson R., Hanson C. W., McDonald E., Ramer N., Hardy D., Shipkowitz N., Bower R. R., Gade E. In vitro and in vivo evaluation of A-56268 (TE-031), a new macrolide. Antimicrob Agents Chemother. 1986 Dec;30(6):865–873. doi: 10.1128/aac.30.6.865. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Fernandes P. B., Ramer N., Rode R. A., Freiberg L. Bioassay for A-56268 (TE-031) and identification of its major metabolite, 14-hydroxy-6-O-methyl erythromycin. Eur J Clin Microbiol Infect Dis. 1988 Feb;7(1):73–76. doi: 10.1007/BF01962181. [DOI] [PubMed] [Google Scholar]
  6. Foulds G., Shepard R. M., Johnson R. B. The pharmacokinetics of azithromycin in human serum and tissues. J Antimicrob Chemother. 1990 Jan;25 (Suppl A):73–82. doi: 10.1093/jac/25.suppl_a.73. [DOI] [PubMed] [Google Scholar]
  7. Franzblau S. G., Hastings R. C. In vitro and in vivo activities of macrolides against Mycobacterium leprae. Antimicrob Agents Chemother. 1988 Dec;32(12):1758–1762. doi: 10.1128/aac.32.12.1758. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Franzblau S. G., Hastings R. C. Rapid in vitro metabolic screen for antileprosy compounds. Antimicrob Agents Chemother. 1987 May;31(5):780–783. doi: 10.1128/aac.31.5.780. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Franzblau S. G. Oxidation of palmitic acid by Mycobacterium leprae in an axenic medium. J Clin Microbiol. 1988 Jan;26(1):18–21. doi: 10.1128/jcm.26.1.18-21.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Gelber R. H. Activity of minocycline in Mycobacterium leprae-infected mice. J Infect Dis. 1987 Jul;156(1):236–239. doi: 10.1093/infdis/156.1.236. [DOI] [PubMed] [Google Scholar]
  11. Gelber R. H. Progress in the chemotherapy of leprosy: status, issues and prospects. Prog Drug Res. 1990;34:421–445. doi: 10.1007/978-3-0348-7128-0_14. [DOI] [PubMed] [Google Scholar]
  12. Gelber R. H. The killing of Mycobacterium leprae in mice by various dietary concentrations of dapsone and rifampicin. Lepr Rev. 1986 Dec;57(4):347–353. [PubMed] [Google Scholar]
  13. Girard A. E., Girard D., English A. R., Gootz T. D., Cimochowski C. R., Faiella J. A., Haskell S. L., Retsema J. A. Pharmacokinetic and in vivo studies with azithromycin (CP-62,993), a new macrolide with an extended half-life and excellent tissue distribution. Antimicrob Agents Chemother. 1987 Dec;31(12):1948–1954. doi: 10.1128/aac.31.12.1948. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Halstenson C. E., Opsahl J. A., Schwenk M. H., Kovarik J. M., Puri S. K., Ho I., Matzke G. R. Disposition of roxithromycin in patients with normal and severely impaired renal function. Antimicrob Agents Chemother. 1990 Mar;34(3):385–389. doi: 10.1128/aac.34.3.385. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Harris E. B., Franzblau S. G., Hastings R. C. Inhibition of phenolic glycolipid-I synthesis in extracellular Mycobacterium leprae as an indicator of antimicrobial activity. Int J Lepr Other Mycobact Dis. 1988 Dec;56(4):588–591. [PubMed] [Google Scholar]
  16. Ji B. H. Drug resistance in leprosy--a review. Lepr Rev. 1985 Dec;56(4):265–278. [PubMed] [Google Scholar]
  17. Ramasesh N., Krahenbuhl J. L., Hastings R. C. In vitro effects of antimicrobial agents on Mycobacterium leprae in mouse peritoneal macrophages. Antimicrob Agents Chemother. 1989 May;33(5):657–662. doi: 10.1128/aac.33.5.657. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Shepard C. C. Statistical analysis of results obtained by two methods for testing drug activity against Mycobacterium leprae. Int J Lepr Other Mycobact Dis. 1982 Mar;50(1):96–101. [PubMed] [Google Scholar]
  19. Shepard C. C., Walker L. L., Van Landingham M., Redus M. A. Kinetic testing of drugs against Mycobacterium leprae in mice. Activity of cephaloridine, rifampin, streptovaricin, vadrine, and viomycin. Am J Trop Med Hyg. 1971 Jul;20(4):616–620. doi: 10.4269/ajtmh.1971.20.616. [DOI] [PubMed] [Google Scholar]
  20. Wise R., Kirkpatrick B., Ashby J., Andrews J. M. Pharmacokinetics and tissue penetration of roxithromycin after multiple dosing. Antimicrob Agents Chemother. 1987 Jul;31(7):1051–1053. doi: 10.1128/aac.31.7.1051. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES