Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1991 May;35(5):796–800. doi: 10.1128/aac.35.5.796

Enhancement of macrophage superoxide anion production by amphotericin B.

E Wilson 1, L Thorson 1, D P Speert 1
PMCID: PMC245109  PMID: 1649568

Abstract

Amphotericin B (AmB) appears to have some important immunomodulatory effects, but its mechanism of action has not been explained. We investigated the effects of AmB on activation of human monocyte-derived macrophages. Macrophages cultured in the presence of AmB had an enhanced capacity to produce superoxide anion after stimulation with phorbol myristate acetate. This enhancement was dose dependent within a therapeutic range of AmB levels (0.1 to 3.0 mg/liter). Macrophages cultured in the presence of AmB had enhanced surface expression of Ia antigen; phagocytosis of unopsonized zymosan, opsonized Staphylococcus aureus, or erythrocytes opsonized with C3bi or immunoglobulin G paradoxically appeared to be reduced, but results did not achieve statistical significance. AmB appears to activate macrophages and may do so via direct effects on the plasma membrane.

Full text

PDF
796

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Babior B. M., Kipnes R. S., Curnutte J. T. Biological defense mechanisms. The production by leukocytes of superoxide, a potential bactericidal agent. J Clin Invest. 1973 Mar;52(3):741–744. doi: 10.1172/JCI107236. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Björkstén B., Ray C., Quie P. G. Inhibition of human neutrophil chemotaxis and chemiluminescence by amphotericin B. Infect Immun. 1976 Jul;14(1):315–317. doi: 10.1128/iai.14.1.315-317.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Blanke T. J., Little J. R., Shirley S. F., Lynch R. G. Augmentation of murine immune responses by amphotericin B. Cell Immunol. 1977 Sep;33(1):180–190. doi: 10.1016/0008-8749(77)90145-9. [DOI] [PubMed] [Google Scholar]
  4. Brajtburg J., Elberg S., Schwartz D. R., Vertut-Croquin A., Schlessinger D., Kobayashi G. S., Medoff G. Involvement of oxidative damage in erythrocyte lysis induced by amphotericin B. Antimicrob Agents Chemother. 1985 Feb;27(2):172–176. doi: 10.1128/aac.27.2.172. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Chapman H. A., Jr, Hibbs J. B., Jr Modulation of macrophage tumoricidal capability by polyene antibiotics: support for membrane lipid as a regulatory determinant of macrophage function. Proc Natl Acad Sci U S A. 1978 Sep;75(9):4349–4353. doi: 10.1073/pnas.75.9.4349. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Chunn C. J., Starr P. R., Gilbert D. N. Neutrophil toxicity of amphotericin B. Antimicrob Agents Chemother. 1977 Aug;12(2):226–230. doi: 10.1128/aac.12.2.226. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Edelson P. J. Intracellular parasites and phagocytic cells: cell biology and pathophysiology. Rev Infect Dis. 1982 Jan-Feb;4(1):124–135. doi: 10.1093/clinids/4.1.124. [DOI] [PubMed] [Google Scholar]
  8. Holz R. W. The effects of the polyene antibiotics nystatin and amphotericin B on thin lipid membranes. Ann N Y Acad Sci. 1974 May 10;235(0):469–479. doi: 10.1111/j.1749-6632.1974.tb43284.x. [DOI] [PubMed] [Google Scholar]
  9. Johnston R. B., Jr, Godzik C. A., Cohn Z. A. Increased superoxide anion production by immunologically activated and chemically elicited macrophages. J Exp Med. 1978 Jul 1;148(1):115–127. doi: 10.1084/jem.148.1.115. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Lin S. H., Medoff G., Kobayashi G. S. Effects of amphotericin B on macrophages and their precursor cells. Antimicrob Agents Chemother. 1977 Jan;11(1):154–160. doi: 10.1128/aac.11.1.154. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Marmer D. J., Fields B. T., Jr, France G. L., Steele R. W. Ketoconazole, amphotericin B, and amphotericin B methyl ester: comparative in vitro and in vivo toxicological effects on neutrophil function. Antimicrob Agents Chemother. 1981 Nov;20(5):660–665. doi: 10.1128/aac.20.5.660. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Medoff G., Dismukes W. E., Meade R. H., 3rd, Moses J. M. A new therapeutic approach to Candida infections. A preliminary report. Arch Intern Med. 1972 Aug;130(2):241–245. [PubMed] [Google Scholar]
  13. Medoff G., Kobayashi G. S. Strategies in the treatment of systemic fungal infections. N Engl J Med. 1980 Jan 17;302(3):145–155. doi: 10.1056/NEJM198001173020304. [DOI] [PubMed] [Google Scholar]
  14. Murray H. W. Interferon-gamma, the activated macrophage, and host defense against microbial challenge. Ann Intern Med. 1988 Apr;108(4):595–608. doi: 10.7326/0003-4819-108-4-595. [DOI] [PubMed] [Google Scholar]
  15. Oosting R. S., van Bree L., van Iwaarden J. F., van Golde L. M., Verhoef J. Impairment of phagocytic functions of alveolar macrophages by hydrogen peroxide. Am J Physiol. 1990 Aug;259(2 Pt 1):L87–L94. doi: 10.1152/ajplung.1990.259.2.L87. [DOI] [PubMed] [Google Scholar]
  16. Perfect J. R., Granger D. L., Durack D. T. Effects of antifungal agents and gamma interferon on macrophage cytotoxicity for fungi and tumor cells. J Infect Dis. 1987 Aug;156(2):316–323. doi: 10.1093/infdis/156.2.316. [DOI] [PubMed] [Google Scholar]
  17. Sokol-Anderson M. L., Brajtburg J., Medoff G. Amphotericin B-induced oxidative damage and killing of Candida albicans. J Infect Dis. 1986 Jul;154(1):76–83. doi: 10.1093/infdis/154.1.76. [DOI] [PubMed] [Google Scholar]
  18. Speert D. P., Silverstein S. C. Phagocytosis of unopsonized zymosan by human monocyte-derived macrophages: maturation and inhibition by mannan. J Leukoc Biol. 1985 Nov;38(5):655–658. doi: 10.1002/jlb.38.5.655. [DOI] [PubMed] [Google Scholar]
  19. Speert D. P., Wright S. D., Silverstein S. C., Mah B. Functional characterization of macrophage receptors for in vitro phagocytosis of unopsonized Pseudomonas aeruginosa. J Clin Invest. 1988 Sep;82(3):872–879. doi: 10.1172/JCI113692. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Stein S. H., Little J. R., Little K. D. Parallel inheritance of tissue catalase activity and immunostimulatory action of amphotericin B in inbred mouse strains. Cell Immunol. 1987 Mar;105(1):99–109. doi: 10.1016/0008-8749(87)90059-1. [DOI] [PubMed] [Google Scholar]
  21. Supapidhayakul S. R., Kizlaitis L. R., Andersen B. R. Stimulation of human and canine neutrophil metabolism by amphotericin B. Antimicrob Agents Chemother. 1981 Feb;19(2):284–289. doi: 10.1128/aac.19.2.284. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Thomas M. Z., Medoff G., Kobayashi G. S. Changes in murine resistance to Listeria monocytogenes infection induced by amphotericin B. J Infect Dis. 1973 Apr;127(4):373–377. doi: 10.1093/infdis/127.4.373. [DOI] [PubMed] [Google Scholar]
  23. Vertut-Doi A., Hannaert P., Bolard J. The polyene antibiotic amphotericin B inhibits the Na+/K+ pump of human erythrocytes. Biochem Biophys Res Commun. 1988 Dec 15;157(2):692–697. doi: 10.1016/s0006-291x(88)80305-x. [DOI] [PubMed] [Google Scholar]
  24. Weening R. S., Wever R., Roos D. Quantitative aspects of the production of superoxide radicals by phagocytizing human granulocytes. J Lab Clin Med. 1975 Feb;85(2):245–252. [PubMed] [Google Scholar]
  25. Wright S. D., Detmers P. A., Jong M. T., Meyer B. C. Interferon-gamma depresses binding of ligand by C3b and C3bi receptors on cultured human monocytes, an effect reversed by fibronectin. J Exp Med. 1986 May 1;163(5):1245–1259. doi: 10.1084/jem.163.5.1245. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Wright S. D., Silverstein S. C. Tumor-promoting phorbol esters stimulate C3b and C3b' receptor-mediated phagocytosis in cultured human monocytes. J Exp Med. 1982 Oct 1;156(4):1149–1164. doi: 10.1084/jem.156.4.1149. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. van GELDER B., SLATER E. C. The extinction coefficient of cytochrome c. Biochim Biophys Acta. 1962 Apr 23;58:593–595. doi: 10.1016/0006-3002(62)90073-2. [DOI] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES