Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1991 May;35(5):824–830. doi: 10.1128/aac.35.5.824

Effect of monodesethyl amodiaquine on human polymorphonuclear neutrophil functions in vitro.

M T Labro 1, J el Benna 1
PMCID: PMC245114  PMID: 1649569

Abstract

We have previously observed that the antimalarial drug amodiaquine impairs the human polymorphonuclear neutrophil (PMN) oxidative burst in vitro. However, the drug acted at a concentration of 100 micrograms/ml, far higher than that which is achievable therapeutically. Since amodiaquine is extensively metabolized into monodesethyl amodiaquine, we investigated whether the metabolite modified PMN functions at lower concentrations than amodiaquine does. Monodesethyl amodiaquine strongly depressed PMN chemotaxis and phagocytosis at concentrations as low as 10 micrograms/ml. This inhibition was reversed by washing out the drug. The PMN oxidative burst was markedly depressed by monodesethyl amodiaquine, whatever the assay technique (luminol-amplified chemiluminescence, lucigenin-amplified chemiluminescence, myeloperoxidase activity) or stimulus used (opsonized zymosan, phorbol myristate acetate, formylmethionyl leucyl phenylalanine). There were extreme interindividual variations in sensitivity to the depressive effect of monodesethyl amodiaquine when the PMN oxidative burst was assayed in terms of luminol-amplified chemiluminescence or lucigenin-amplified chemiluminescence. PMN samples were divided into two groups on the basis of the MIC of the drug: 60% of the samples were "highly sensitive," being strongly inhibited at concentrations as low as 0.1 micrograms/ml (obtained during therapy), whereas the "moderately sensitive" samples were inhibited at concentrations of 10 micrograms/ml and above. The difference between the two groups was highly significant. This PMN sensitivity to the inhibitory effect of the drug was not related to intrinsic oxidative metabolism. Our data indicate that monodesethyl amodiaquine, the main metabolite of amodiaquine, has a far stronger inhibitory effect on various PMN functions in vitro than the parent drug, warranting relevant in vivo studies.

Full text

PDF
824

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aniansson H., Stendahl O., Dahlgren C. Comparison between luminol- and lucigenindependent chemiluminescence of polymorphonuclear leukocytes. Acta Pathol Microbiol Immunol Scand C. 1984 Dec;92(6):357–361. doi: 10.1111/j.1699-0463.1984.tb00100.x. [DOI] [PubMed] [Google Scholar]
  2. Aymard J. P., Rouveix B., Klein M., Groult F., May T., Ferry R., Netter P. Agranulocytose aiguüe à l'amodiaquine. Description de 4 cas et revue de la littérature. Therapie. 1987 Jul-Aug;42(4):359–364. [PubMed] [Google Scholar]
  3. Bates E. J., Ferrante A. Stimulation of human neutrophil degranulation by mefloquine. Int Arch Allergy Appl Immunol. 1988;86(4):446–452. doi: 10.1159/000234633. [DOI] [PubMed] [Google Scholar]
  4. Brown J., Smalley M. E. Inhibition of the in vitro growth of Plasmodium falciparum by human polymorphonuclear neutrophil leucocytes. Clin Exp Immunol. 1981 Oct;46(1):106–109. [PMC free article] [PubMed] [Google Scholar]
  5. Christie G., Breckenridge A. M., Park B. K. Drug-protein conjugates--XVIII. Detection of antibodies towards the antimalarial amodiaquine and its quinone imine metabolite in man and the rat. Biochem Pharmacol. 1989 May 1;38(9):1451–1458. doi: 10.1016/0006-2952(89)90184-6. [DOI] [PubMed] [Google Scholar]
  6. Churchill F. C., Patchen L. C., Campbell C. C., Schwartz I. K., Nguyen-Dinh P., Dickinson C. M. Amodiaquine as a prodrug: importance of metabolite(s) in the antimalarial effect of amodiaquine in humans. Life Sci. 1985 Jan 7;36(1):53–62. doi: 10.1016/0024-3205(85)90285-1. [DOI] [PubMed] [Google Scholar]
  7. Clark I. A., Chaudhri G., Cowden W. B. Some roles of free radicals in malaria. Free Radic Biol Med. 1989;6(3):315–321. doi: 10.1016/0891-5849(89)90058-0. [DOI] [PubMed] [Google Scholar]
  8. Douer D., Schwartz E., Shaked N., Ramot B. Amodiaquine-induced agranulocytosis: drug inhibition of myeloid colonies in the presence of patient's serum. Isr J Med Sci. 1985 Apr;21(4):331–334. [PubMed] [Google Scholar]
  9. Ellis M. E., Steed A. J., Addison G. M. Neutropenia associated with dual antimalarial chemoprophylaxis--use of bone-marrow culture as an aid in further drug management. J Infect. 1987 Sep;15(2):147–152. doi: 10.1016/s0163-4453(87)93130-6. [DOI] [PubMed] [Google Scholar]
  10. Ferrante A., Rowan-Kelly B., Seow W. K., Thong Y. H. Depression of human polymorphonuclear leucocyte function by anti-malarial drugs. Immunology. 1986 May;58(1):125–130. [PMC free article] [PubMed] [Google Scholar]
  11. Fontagne J., Roch-Arveiller M., Giroud J. P., Lechat P. Effects of some antimalarial drugs on rat inflammatory polymorphonuclear leukocyte function. Biomed Pharmacother. 1989;43(1):43–51. doi: 10.1016/0753-3322(89)90190-x. [DOI] [PubMed] [Google Scholar]
  12. Hakim J., Cramer E., Boivin P., Troube H., Boucherot J. Quantitative iodination of human blood polymorphonuclear leukocytes. Eur J Clin Invest. 1975 Jun 12;5(3):215–219. doi: 10.1111/j.1365-2362.1975.tb00447.x. [DOI] [PubMed] [Google Scholar]
  13. Hatton C. S., Peto T. E., Bunch C., Pasvol G., Russell S. J., Singer C. R., Edwards G., Winstanley P. Frequency of severe neutropenia associated with amodiaquine prophylaxis against malaria. Lancet. 1986 Feb 22;1(8478):411–414. doi: 10.1016/s0140-6736(86)92371-8. [DOI] [PubMed] [Google Scholar]
  14. Kharazmi A. Antimalarial drugs and human neutrophil oxidative metabolism. Trans R Soc Trop Med Hyg. 1986;80(1):94–97. doi: 10.1016/0035-9203(86)90205-1. [DOI] [PubMed] [Google Scholar]
  15. Kharazmi A., Eriksen H. O. Phagocytosis and bactericidal activity of human leucocytes under influence of antimalarial drugs. Trans R Soc Trop Med Hyg. 1986;80(5):758–760. doi: 10.1016/0035-9203(86)90378-0. [DOI] [PubMed] [Google Scholar]
  16. Kharazmi A., Høiby N., Theander T. G. Pseudomonas aeruginosa septicaemia in a patient with severe Plasmodium falciparum. Trans R Soc Trop Med Hyg. 1987;81(1):49–50. doi: 10.1016/0035-9203(87)90279-3. [DOI] [PubMed] [Google Scholar]
  17. Kharazmi A., Jepsen S. Enhanced inhibition of in vitro multiplication of Plasmodium falciparum by stimulated human polymorphonuclear leucocytes. Clin Exp Immunol. 1984 Aug;57(2):287–292. [PMC free article] [PubMed] [Google Scholar]
  18. Kharazmi A., Jepsen S., Valerius N. H. Polymorphonuclear leucocytes defective in oxidative metabolism inhibit in vitro growth of Plasmodium falciparum. Evidence against an oxygen-dependent mechanism. Scand J Immunol. 1984 Jul;20(1):93–96. doi: 10.1111/j.1365-3083.1984.tb00981.x. [DOI] [PubMed] [Google Scholar]
  19. Kumaratilake L. M., Ferrante A., Rzepczyk C. M. Tumor necrosis factor enhances neutrophil-mediated killing of Plasmodium falciparum. Infect Immun. 1990 Mar;58(3):788–793. doi: 10.1128/iai.58.3.788-793.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Labro M. T., Amit N., Babin-Chevaye C., Hakim J. Synergy between RU 28965 (roxithromycin) and human neutrophils for bactericidal activity in vitro. Antimicrob Agents Chemother. 1986 Jul;30(1):137–142. doi: 10.1128/aac.30.1.137. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Labro M. T., el Benna J., Babin-Chevaye C. Comparison of the in-vitro effect of several macrolides on the oxidative burst of human neutrophils. J Antimicrob Chemother. 1989 Oct;24(4):561–572. doi: 10.1093/jac/24.4.561. [DOI] [PubMed] [Google Scholar]
  22. Lind D. E., Levi J. A., Vincent P. C. Amodiaquine-induced agranulocytosis: toxic effect of amodiaquine in bone marrow cultures in vitro. Br Med J. 1973 Feb 24;1(5851):458–460. doi: 10.1136/bmj.1.5851.458. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Maggs J. L., Kitteringham N. R., Breckenridge A. M., Park B. K. Autoxidative formation of a chemically reactive intermediate from amodiaquine, a myelotoxin and hepatotoxin in man. Biochem Pharmacol. 1987 Jul 1;36(13):2061–2062. doi: 10.1016/0006-2952(87)90130-4. [DOI] [PubMed] [Google Scholar]
  24. Maggs J. L., Tingle M. D., Kitteringham N. R., Park B. K. Drug-protein conjugates--XIV. Mechanisms of formation of protein-arylating intermediates from amodiaquine, a myelotoxin and hepatotoxin in man. Biochem Pharmacol. 1988 Jan 15;37(2):303–311. doi: 10.1016/0006-2952(88)90733-2. [DOI] [PubMed] [Google Scholar]
  25. Malhotra K., Salmon D., Le Bras J., Vilde J. L. Potentiation of chloroquine activity against Plasmodium falciparum by the peroxidase-hydrogen peroxide system. Antimicrob Agents Chemother. 1990 Oct;34(10):1981–1985. doi: 10.1128/aac.34.10.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Malhotra K., Salmon D., Le Bras J., Vilde J. L. Susceptibility of Plasmodium falciparum to a peroxidase-mediated oxygen-dependent microbicidal system. Infect Immun. 1988 Dec;56(12):3305–3309. doi: 10.1128/iai.56.12.3305-3309.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Neftel K. A., Woodtly W., Schmid M., Frick P. G., Fehr J. Amodiaquine induced agranulocytosis and liver damage. Br Med J (Clin Res Ed) 1986 Mar 15;292(6522):721–723. doi: 10.1136/bmj.292.6522.721. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Nelson R. D., Quie P. G., Simmons R. L. Chemotaxis under agarose: a new and simple method for measuring chemotaxis and spontaneous migration of human polymorphonuclear leukocytes and monocytes. J Immunol. 1975 Dec;115(6):1650–1656. [PubMed] [Google Scholar]
  29. Nielsen H., Kharazmi A., Theander T. G. Suppression of blood monocyte and neutrophil chemotaxis in acute human malaria. Parasite Immunol. 1986 Nov;8(6):541–550. doi: 10.1111/j.1365-3024.1986.tb00868.x. [DOI] [PubMed] [Google Scholar]
  30. Perianin A., Labro M. T., Hakim J. Chemokinetic activity of N-formyl-methionyl-leucyl-phenylalanine on human neutrophils, and its modulation by phenylbutazone. Biochem Pharmacol. 1982 Oct 1;31(19):3071–3076. doi: 10.1016/0006-2952(82)90082-x. [DOI] [PubMed] [Google Scholar]
  31. Prasad R. N., Virk K. J., Mahajan R. C., Ganguly N. K. Reactive oxygen species generation by Kupffer cells and blood monocytes of mice infected with Plasmodium berghei and the chloroquine treatment. Jpn J Exp Med. 1990 Feb;60(1):1–4. [PubMed] [Google Scholar]
  32. Pussard E., Verdier F., Blayo M. C., Pocidalo J. J. Biotransformation de l'amodiaquine et prophylaxie du paludisme à Plasmodium falciparum. C R Acad Sci III. 1985;301(8):383–385. [PubMed] [Google Scholar]
  33. Rhodes E. G., Ball J., Franklin I. M. Amodiaquine induced agranulocytosis: inhibition of colony growth in bone marrow by antimalarial agents. Br Med J (Clin Res Ed) 1986 Mar 15;292(6522):717–718. doi: 10.1136/bmj.292.6522.717. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Rouveix B., Coulombel L., Aymard J. P., Chau F., Abel L. Amodiaquine-induced immune agranulocytosis. Br J Haematol. 1989 Jan;71(1):7–11. doi: 10.1111/j.1365-2141.1989.tb06266.x. [DOI] [PubMed] [Google Scholar]
  35. Styrt B., Klempner M. S. Inhibition of neutrophil oxidative metabolism by lysosomotropic weak bases. Blood. 1986 Feb;67(2):334–342. [PubMed] [Google Scholar]
  36. Torres M., De Prost D., Hakim J., Gougerot M. A. Metabolic activity of human polymorphonuclear leucocytes: relation to ingestion rate. Eur J Clin Invest. 1979 Jun;9(3):209–217. doi: 10.1111/j.1365-2362.1979.tb00925.x. [DOI] [PubMed] [Google Scholar]
  37. Trubowitz S., Masek B. Plasmodium falciparum: phagocytosis by polymorphonuclear leukocytes. Science. 1968 Oct 11;162(3850):273–274. doi: 10.1126/science.162.3850.273. [DOI] [PubMed] [Google Scholar]
  38. Wangoo A., Ganguly N. K., Mahajan R. C. Immunosuppression in murine malaria: suppressor role of macrophages and their products during acute and chronic Plasmodium berghei infection. APMIS. 1990 May;98(5):407–414. [PubMed] [Google Scholar]
  39. Watkins W. M., Sixsmith D. G., Spencer H. C., Boriga D. A., Kariuki D. M., Kipingor T., Koech D. K. Effectiveness of amodiaquine as treatment for chloroquine-resistant Plasmodium falciparum infections in Kenya. Lancet. 1984 Feb 18;1(8373):357–359. doi: 10.1016/s0140-6736(84)90410-0. [DOI] [PubMed] [Google Scholar]
  40. Winstanley P. A., Edwards G., Orme M. L., Breckenridge A. M. Effect of dose size on amodiaquine pharmacokinetics after oral administration. Eur J Clin Pharmacol. 1987;33(3):331–333. doi: 10.1007/BF00637573. [DOI] [PubMed] [Google Scholar]
  41. el Benna J., Labro M. T. Effect of quinine and cinchonine on human neutrophils functions in vitro. J Antimicrob Chemother. 1990 Jun;25(6):949–957. doi: 10.1093/jac/25.6.949. [DOI] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES