Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1991 May;35(5):916–921. doi: 10.1128/aac.35.5.916

Invalidity for Pseudomonas aeruginosa of an accepted model of bacterial permeability to beta-lactam antibiotics.

D M Livermore 1, K W Davy 1
PMCID: PMC245129  PMID: 1906695

Abstract

The accepted model for the penetration of beta-lactam antibiotics into gram-negative bacteria is that proposed by Zimmermann and Rosselet (Antimicrob. Agents Chemother. 12:368-372, 1977). The model assumes (i) that diffusion of the antibiotic molecules across the outer membrane obeys Fick's law and can be characterized by a permeability constant for any given combination of organism and drug, (ii) that drug hydrolysis within the periplasm obeys Michaelis-Menten kinetics, and (iii) that a steady state is rapidly attained between drug uptake and hydrolysis. The model has allowed accurate prediction of antibiotic MICs for Escherichia coli strains from a knowledge of their beta-lactamase production and permeability characteristics. It has been suggested that the model is inappropriate for Pseudomonas aeruginosa, but attempts to confirm this have been bedevilled by experimental difficulties in estimating permeability coefficients for this species. In the present study, we tested a prediction of the model that the overall resistance of P. aeruginosa transconjugants containing a plasmid-encoded beta-lactamase should continue to depend partly on permeability. Transconjugants with PSE-4 beta-lactamase were constructed in host strains with widely different levels of intrinsic, presumably impermeability-determined resistance. Contrary to the prediction of the model, all the transconjugants developed identical overall levels of resistance to substrate beta-lactams, such as azlocillin and cefoperazone, irrespective of the initial levels of intrinsic resistance of the recipient strains. We conclude that the model is inappropriate for P. aeruginosa, and possible explanations for the organism's behavior are discussed.

Full text

PDF
916

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Angus B. L., Carey A. M., Caron D. A., Kropinski A. M., Hancock R. E. Outer membrane permeability in Pseudomonas aeruginosa: comparison of a wild-type with an antibiotic-supersusceptible mutant. Antimicrob Agents Chemother. 1982 Feb;21(2):299–309. doi: 10.1128/aac.21.2.299. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Curtis N. A., Orr D., Boulton M. G., Ross G. W. Penicillin-binding proteins of Pseudomonas aeruginosa. Comparison of two strains differing in their resistance to beta-lactam antibiotics. J Antimicrob Chemother. 1981 Feb;7(2):127–136. doi: 10.1093/jac/7.2.127. [DOI] [PubMed] [Google Scholar]
  3. Fyfe J. A., Govan J. R. Chromosomal loci associated with antibiotic hypersensitivity in pulmonary isolates of Pseudomonas aeruginosa. J Gen Microbiol. 1984 Apr;130(4):825–834. doi: 10.1099/00221287-130-4-825. [DOI] [PubMed] [Google Scholar]
  4. Hewinson R. G., Lane D. C., Slack M. P., Nichols W. W. The permeability parameter of the outer membrane of Pseudomonas aeruginosa varies with the concentration of a test substrate, cephalosporin C. J Gen Microbiol. 1986 Jan;132(1):27–33. doi: 10.1099/00221287-132-1-27. [DOI] [PubMed] [Google Scholar]
  5. Jacoby G. A. Properties of R plasmids determining gentamicin resistance by acetylation in Pseudomonas aeruginosa. Antimicrob Agents Chemother. 1974 Sep;6(3):239–252. doi: 10.1128/aac.6.3.239. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. KELLY M., CLARKE P. H. An inducible amidase produced by a strain of Pseudomonas aeruginosa. J Gen Microbiol. 1962 Feb;27:305–316. doi: 10.1099/00221287-27-2-305. [DOI] [PubMed] [Google Scholar]
  7. Liu W., Nikaido H. Contribution of the cell-surface-associated enzyme in the Zimmermann-Rosselet assay of outer membrane permeability of beta-lactam antibiotics. Antimicrob Agents Chemother. 1991 Jan;35(1):177–179. doi: 10.1128/aac.35.1.177. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Livermore D. M. Penicillin-binding proteins, porins and outer-membrane permeability of carbenicillin-resistant and -susceptible strains of Pseudomonas aeruginosa. J Med Microbiol. 1984 Oct;18(2):261–270. doi: 10.1099/00222615-18-2-261. [DOI] [PubMed] [Google Scholar]
  9. Livermore D. M. Permeation of beta-lactam antibiotics into Escherichia coli, Pseudomonas aeruginosa, and other gram-negative bacteria. Rev Infect Dis. 1988 Jul-Aug;10(4):691–698. doi: 10.1093/clinids/10.4.691. [DOI] [PubMed] [Google Scholar]
  10. Livermore D. M., Pitt T. L. Dissociation of surface properties and "intrinsic" resistance to beta lactams in Pseudomonas aeruginosa. J Med Microbiol. 1986 Nov;22(3):217–224. doi: 10.1099/00222615-22-3-217. [DOI] [PubMed] [Google Scholar]
  11. Livermore D. M., Pitt T. L., Jones C. S., Crees-Morris J. A., Williams R. J. PSE-4 beta lactamase: a serotype-specific enzyme in Pseudomonas aeruginosa. J Med Microbiol. 1985 Feb;19(1):45–53. doi: 10.1099/00222615-19-1-45. [DOI] [PubMed] [Google Scholar]
  12. Livermore D. M. Radiolabelling of penicillin-binding proteins (PBPs) in intact Pseudomonas aeruginosa cells: consequences of beta-lactamase activity by PBP-5. J Antimicrob Chemother. 1987 Jun;19(6):733–742. doi: 10.1093/jac/19.6.733. [DOI] [PubMed] [Google Scholar]
  13. Livermore D. M., Yang Y. J. Beta-lactamase lability and inducer power of newer beta-lactam antibiotics in relation to their activity against beta-lactamase-inducibility mutants of Pseudomonas aeruginosa. J Infect Dis. 1987 Apr;155(4):775–782. doi: 10.1093/infdis/155.4.775. [DOI] [PubMed] [Google Scholar]
  14. Livermore D. M., Yang Y. J. Comparative activity of meropenem against Pseudomonas aeruginosa strains with well-characterized resistance mechanisms. J Antimicrob Chemother. 1989 Sep;24 (Suppl A):149–159. doi: 10.1093/jac/24.suppl_a.149. [DOI] [PubMed] [Google Scholar]
  15. Mathew A., Harris A. M., Marshall M. J., Ross G. W. The use of analytical isoelectric focusing for detection and identification of beta-lactamases. J Gen Microbiol. 1975 May;88(1):169–178. doi: 10.1099/00221287-88-1-169. [DOI] [PubMed] [Google Scholar]
  16. Nikaido H., Normark S. Sensitivity of Escherichia coli to various beta-lactams is determined by the interplay of outer membrane permeability and degradation by periplasmic beta-lactamases: a quantitative predictive treatment. Mol Microbiol. 1987 Jul;1(1):29–36. doi: 10.1111/j.1365-2958.1987.tb00523.x. [DOI] [PubMed] [Google Scholar]
  17. Nikaido H. Outer membrane barrier as a mechanism of antimicrobial resistance. Antimicrob Agents Chemother. 1989 Nov;33(11):1831–1836. doi: 10.1128/aac.33.11.1831. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Nikaido H., Rosenberg E. Y., Foulds J. Porin channels in Escherichia coli: studies with beta-lactams in intact cells. J Bacteriol. 1983 Jan;153(1):232–240. doi: 10.1128/jb.153.1.232-240.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Richmond M. H., Sykes R. B. The beta-lactamases of gram-negative bacteria and their possible physiological role. Adv Microb Physiol. 1973;9:31–88. doi: 10.1016/s0065-2911(08)60376-8. [DOI] [PubMed] [Google Scholar]
  20. Yoshimura F., Nikaido H. Permeability of Pseudomonas aeruginosa outer membrane to hydrophilic solutes. J Bacteriol. 1982 Nov;152(2):636–642. doi: 10.1128/jb.152.2.636-642.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Zimmermann W. Penetration of beta-lactam antibiotics into their target enzymes in Pseudomonas aeruginosa: comparison of a highly sensitive mutant with its parent strain. Antimicrob Agents Chemother. 1980 Jul;18(1):94–100. doi: 10.1128/aac.18.1.94. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Zimmermann W., Rosselet A. Function of the outer membrane of Escherichia coli as a permeability barrier to beta-lactam antibiotics. Antimicrob Agents Chemother. 1977 Sep;12(3):368–372. doi: 10.1128/aac.12.3.368. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES