Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1991 May;35(5):948–954. doi: 10.1128/aac.35.5.948

Mechanisms that may account for differential antibiotic susceptibilities among Coxiella burnetii isolates.

M R Yeaman 1, O G Baca 1
PMCID: PMC245134  PMID: 1854176

Abstract

The Nine Mile, S Q217, and Priscilla isolates, representative of the three major genetic groups of Coxiella burnetii, are known to differ in their susceptibilities to antibiotics. Mechanisms potentially responsible for these differences were investigated. Accumulation of antibiotics by infected L929 cells and purified isolates was measured. In addition, C. burnetii plasmid-transformed Escherichia coli HB101 cells were used to study the possibility that different C. burnetii plasmids are responsible for disparate antibiotic susceptibilities of the isolates. L929 cells recently or persistently infected with the Priscilla isolate exhibited a significantly reduced accumulation of [3H]tetracycline as compared with that in L929 cells infected with either the Nine Mile or S Q217 isolates; accumulation of this drug was greater in cells recently infected each isolate. In contrast, L929 cells recently or persistently infected with the different isolates accumulated [3H]norfloxacin to an equivalent extent. [3H]tetracycline accumulation was approximately the same among the purified isolates. However, as measured by both scintillation and spectrofluorometry, norfloxacin accumulation was significantly diminished in the purified Priscilla isolate. pH had no apparent effect upon isolate permeabilities. The presence of C. burnetii QpH1 or QpRS plasmids did not alter the antibiotic susceptibility of E. coli. Collectively, these results indicate that differential susceptibilities to tetracyclines or fluoroquinolones in C. burnetii isolates may be the result of distinct mechanisms involving altered host-cell (tetracyclines) or isolate-specific (fluoroquinolones) permeabilities.

Full text

PDF
948

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ARIMA K., IZAKI K. ACCUMULATION OF OXYTETRACYCLINE RELEVANT TO ITS BACTERICIDAL ACTION IN THE CELLS OF ESCHERICHIA COLI. Nature. 1963 Oct 12;200:192–193. doi: 10.1038/200192a0. [DOI] [PubMed] [Google Scholar]
  2. Baca O. G., Akporiaye E. T., Aragon A. S., Martinez I. L., Robles M. V., Warner N. L. Fate of phase I and phase II Coxiella burnetii in several macrophage-like tumor cell lines. Infect Immun. 1981 Jul;33(1):258–266. doi: 10.1128/iai.33.1.258-266.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bread N. S., Jr, Armentrout S. A., Weisberger A. S. Inhibition of mammalian protein synthesis by antibiotics. Pharmacol Rev. 1969 Sep;21(3):213–245. [PubMed] [Google Scholar]
  4. Chapman J. S., Georgopapadakou N. H. Routes of quinolone permeation in Escherichia coli. Antimicrob Agents Chemother. 1988 Apr;32(4):438–442. doi: 10.1128/aac.32.4.438. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cohen S. P., Hooper D. C., Wolfson J. S., Souza K. S., McMurry L. M., Levy S. B. Endogenous active efflux of norfloxacin in susceptible Escherichia coli. Antimicrob Agents Chemother. 1988 Aug;32(8):1187–1191. doi: 10.1128/aac.32.8.1187. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Day L. E. Tetracycline inhibition of cell-free protein synthesis. II. Effect of the binding of tetracycline to the components of the system. J Bacteriol. 1966 Jul;92(1):197–203. doi: 10.1128/jb.92.1.197-203.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Easmon C. S., Crane J. P. Uptake of ciprofloxacin by human neutrophils. J Antimicrob Chemother. 1985 Jul;16(1):67–73. doi: 10.1093/jac/16.1.67. [DOI] [PubMed] [Google Scholar]
  8. Easmon C. S., Crane J. P. Uptake of ciprofloxacin by macrophages. J Clin Pathol. 1985 Apr;38(4):442–444. doi: 10.1136/jcp.38.4.442. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. FRANKLIN T. J. The inhibition of incorporation of leucine into protein of cell-free systems from rat liver and Escherichia coli by chlortetracycline. Biochem J. 1963 Jun;87:449–453. doi: 10.1042/bj0870449. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hackstadt T., Williams J. C. Biochemical stratagem for obligate parasitism of eukaryotic cells by Coxiella burnetii. Proc Natl Acad Sci U S A. 1981 May;78(5):3240–3244. doi: 10.1073/pnas.78.5.3240. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hancock R. E. Alterations in outer membrane permeability. Annu Rev Microbiol. 1984;38:237–264. doi: 10.1146/annurev.mi.38.100184.001321. [DOI] [PubMed] [Google Scholar]
  12. Mandell G. L. Interaction of intraleukocytic bacteria and antibiotics. J Clin Invest. 1973 Jul;52(7):1673–1679. doi: 10.1172/JCI107348. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. McMurry L., Levy S. B. Two transport systems for tetracycline in sensitive Escherichia coli: critical role for an initial rapid uptake system insensitive to energy inhibitors. Antimicrob Agents Chemother. 1978 Aug;14(2):201–209. doi: 10.1128/aac.14.2.201. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Michel-Briand Y., Laporte J. M., Couetdic G., Sansonetti P. J. Elimination of a virulence plasmid from Shigella sonnei and Escherichia coli by antibiotics. Ann Inst Pasteur Microbiol. 1986 Nov-Dec;137B(3):291–295. doi: 10.1016/s0769-2609(86)80119-3. [DOI] [PubMed] [Google Scholar]
  15. Michel-Briand Y., Uccelli V., Laporte J. M., Plesiat P. Elimination of plasmids from Enterobacteriaceae by 4-quinolone derivatives. J Antimicrob Chemother. 1986 Dec;18(6):667–674. doi: 10.1093/jac/18.6.667. [DOI] [PubMed] [Google Scholar]
  16. Raoult D., Levy P. Y., Harlé J. R., Etienne J., Massip P., Goldstein F., Micoud M., Beytout J., Gallais H., Remy G. Chronic Q fever: diagnosis and follow-up. Ann N Y Acad Sci. 1990;590:51–60. doi: 10.1111/j.1749-6632.1990.tb42206.x. [DOI] [PubMed] [Google Scholar]
  17. Roman M. J., Coriz P. D., Baca O. G. A proposed model to explain persistent infection of host cells with Coxiella burnetii. J Gen Microbiol. 1986 May;132(5):1415–1422. doi: 10.1099/00221287-132-5-1415. [DOI] [PubMed] [Google Scholar]
  18. Samuel J. E., Frazier M. E., Kahn M. L., Thomashow L. S., Mallavia L. P. Isolation and characterization of a plasmid from phase I Coxiella burnetii. Infect Immun. 1983 Aug;41(2):488–493. doi: 10.1128/iai.41.2.488-493.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Samuel J. E., Frazier M. E., Mallavia L. P. Correlation of plasmid type and disease caused by Coxiella burnetii. Infect Immun. 1985 Sep;49(3):775–779. doi: 10.1128/iai.49.3.775-779.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Silberman R., Fiset P. Method for counting Rickettsiae and Chlamydiae in purified suspensions. J Bacteriol. 1968 Jan;95(1):259–261. doi: 10.1128/jb.95.1.259-261.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Smith J. T. The mode of action of 4-quinolones and possible mechanisms of resistance. J Antimicrob Chemother. 1986 Nov;18 (Suppl 500):21–29. doi: 10.1093/jac/18.supplement_d.21. [DOI] [PubMed] [Google Scholar]
  22. Weisser J., Wiedemann B. Elimination of plasmids by new 4-quinolones. Antimicrob Agents Chemother. 1985 Nov;28(5):700–702. doi: 10.1128/aac.28.5.700. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Williams J. C., Peacock M. G., McCaul T. F. Immunological and biological characterization of Coxiella burnetii, phases I and II, separated from host components. Infect Immun. 1981 May;32(2):840–851. doi: 10.1128/iai.32.2.840-851.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Wolfson J. S., Hooper D. C. The fluoroquinolones: structures, mechanisms of action and resistance, and spectra of activity in vitro. Antimicrob Agents Chemother. 1985 Oct;28(4):581–586. doi: 10.1128/aac.28.4.581. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Yeaman M. R., Baca O. G. Unexpected antibiotic susceptibility of a chronic isolate of Coxiella burnetii. Ann N Y Acad Sci. 1990;590:297–305. doi: 10.1111/j.1749-6632.1990.tb42236.x. [DOI] [PubMed] [Google Scholar]
  26. Yeaman M. R., Mitscher L. A., Baca O. G. In vitro susceptibility of Coxiella burnetii to antibiotics, including several quinolones. Antimicrob Agents Chemother. 1987 Jul;31(7):1079–1084. doi: 10.1128/aac.31.7.1079. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Yeaman M. R., Roman M. J., Baca O. G. Antibiotic susceptibilities of two Coxiella burnetii isolates implicated in distinct clinical syndromes. Antimicrob Agents Chemother. 1989 Jul;33(7):1052–1057. doi: 10.1128/aac.33.7.1052. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Yebra M., Ortigosa J., Albarrán F., Crespo M. G. Ciprofloxacin in a case of Q fever endocarditis. N Engl J Med. 1990 Aug 30;323(9):614–614. doi: 10.1056/NEJM199008303230917. [DOI] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES