Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1991 Jul;35(7):1298–1302. doi: 10.1128/aac.35.7.1298

Effects of intravitreal dexamethasone on concentration of intravitreal vancomycin in experimental methicillin-resistant Staphylococcus epidermidis endophthalmitis.

M A Smith 1, J A Sorenson 1, C Smith 1, M Miller 1, M Borenstein 1
PMCID: PMC245161  PMID: 1929285

Abstract

Intravitreal corticosteroids in the treatment of bacterial endophthalmitis remain controversial. We utilized an experimental rabbit model of methicillin-resistant Staphylococcus epidermidis endophthalmitis (i) to calculate the intravitreal vancomycin concentration in rabbit eyes receiving intravitreal vancomycin alone or in combination with intravitreal dexamethasone and (ii) to determine whether an intravitreal steroid has any effect on intravitreal vancomycin levels. All right eyes were infected and all left eyes were uninfected. The rabbits were divided into two treatment groups: (i) 32 eyes (group I) were injected with intravitreal vancomycin, 1.0 mg (0.1 ml); (ii) 32 additional eyes (group II) were injected with intravitreal dexamethasone, 400 micrograms (0.1 ml), in addition to vancomycin. Measurement of intravitreal vancomycin concentration was performed following sacrifice, utilizing a microbiologic agar diffusion assay. Analyses of intravitreal vancomycin concentrations were performed by using model-independent parameters, with area under the concentration-time curves derived by trapezoidal approximation. The intravitreal vancomycin concentration was significantly lower in both uninfected and infected group II eyes (P less than 0.002). Analysis of intravitreal vancomycin concentration-time relationships was performed by using a nonlinear least-squares regression program; data best fit a one-compartment model. In addition, no vancomycin-dexamethasone interaction could be demonstrated. The reduced level of intravitreal vancomycin in the presence of intravitreal dexamethasone may have important clinical implications.

Full text

PDF
1298

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aronson S. B., Sussman S. J., Moore T. E., Jr, Williams F. C., Goodner E. K. Corticosteroid therapy in metastatic endophthalmitis. Arch Ophthalmol. 1971 Jan;85(1):61–70. doi: 10.1001/archopht.1971.00990050063009. [DOI] [PubMed] [Google Scholar]
  2. Barza M. Antibacterial agents in the treatment of ocular infections. Infect Dis Clin North Am. 1989 Sep;3(3):533–551. [PubMed] [Google Scholar]
  3. Barza M., Kane A., Baum J. Pharmacokinetics of intravitreal carbenicillin, cefazolin, and gentamicin in rhesus monkeys. Invest Ophthalmol Vis Sci. 1983 Dec;24(12):1602–1606. [PubMed] [Google Scholar]
  4. Barza M., McCue M. Pharmacokinetics of aztreonam in rabbit eyes. Antimicrob Agents Chemother. 1983 Oct;24(4):468–473. doi: 10.1128/aac.24.4.468. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Baum J. L., Barza M., Lugar J., Onigman P. The effect of corticosteroids in the treatment of experimental bacterial endophthalmitis. Am J Ophthalmol. 1975 Sep;80(3 Pt 2):513–515. doi: 10.1016/0002-9394(75)90218-4. [DOI] [PubMed] [Google Scholar]
  6. Cobo L. M., Forster R. K. The clearance of intravitreal gentamicin. Am J Ophthalmol. 1981 Jul;92(1):59–62. doi: 10.1016/s0002-9394(14)75908-2. [DOI] [PubMed] [Google Scholar]
  7. Graham R. O., Peyman G. A. Intravitreal injection of dexamethasone. Treatment of experimentally induced endophthalmitis. Arch Ophthalmol. 1974 Aug;92(2):149–154. doi: 10.1001/archopht.1974.01010010155016. [DOI] [PubMed] [Google Scholar]
  8. McCuen B. W., 2nd, Bessler M., Tano Y., Chandler D., Machemer R. The lack of toxicity of intravitreally administered triamcinolone acetonide. Am J Ophthalmol. 1981 Jun;91(6):785–788. doi: 10.1016/0002-9394(81)90013-1. [DOI] [PubMed] [Google Scholar]
  9. Meredith T. A., Aguilar H. E., Miller M. J., Gardner S. K., Trabelsi A., Wilson L. A. Comparative treatment of experimental Staphylococcus epidermidis endophthalmitis. Arch Ophthalmol. 1990 Jun;108(6):857–860. doi: 10.1001/archopht.1990.01070080101043. [DOI] [PubMed] [Google Scholar]
  10. Raichand M., Peyman G. A., Schwartz H., Roe C. Anti-inflammatory action of dexamethasone in vitrectomy infusion fluid. Ophthalmic Surg. 1982 Jun;13(6):493–498. [PubMed] [Google Scholar]
  11. Sheiner L. B., Beal S. L. Evaluation of methods for estimating population pharmacokinetic parameters. III. Monoexponential model: routine clinical pharmacokinetic data. J Pharmacokinet Biopharm. 1983 Jun;11(3):303–319. doi: 10.1007/BF01061870. [DOI] [PubMed] [Google Scholar]
  12. Sheiner L. B., Rosenberg B., Marathe V. V. Estimation of population characteristics of pharmacokinetic parameters from routine clinical data. J Pharmacokinet Biopharm. 1977 Oct;5(5):445–479. doi: 10.1007/BF01061728. [DOI] [PubMed] [Google Scholar]
  13. Smith M. A., Sorenson J. A., Lowy F. D., Shakin J. L., Harrison W., Jakobiec F. A. Treatment of experimental methicillin-resistant Staphylococcus epidermidis endophthalmitis with intravitreal vancomycin. Ophthalmology. 1986 Oct;93(10):1328–1335. doi: 10.1016/s0161-6420(86)33579-6. [DOI] [PubMed] [Google Scholar]
  14. Vastine D. W., Peyman G. A., Guth S. B. Visual prognosis in bacterial endophthalmitis treated with intravitreal antibiotics. Ophthalmic Surg. 1979 Mar;10(3):76–83. [PubMed] [Google Scholar]
  15. Walsh A., Haft D. A., Miller M. H., Loran M. R., Friedman A. H. Ocular penetration of 5-fluorocytosine. Invest Ophthalmol Vis Sci. 1978 Jul;17(7):691–694. [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES