Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1991 Jul;35(7):1315–1320. doi: 10.1128/aac.35.7.1315

5'-Alkyl-substituted analogs of 5'-methylthioadenosine as trypanocides.

C J Bacchi 1, J R Sufrin 1, H C Nathan 1, A J Spiess 1, T Hannan 1, J Garofalo 1, K Alecia 1, L Katz 1, N Yarlett 1
PMCID: PMC245164  PMID: 1929287

Abstract

5'-Deoxy-5'-(methylthio)adenosine (MTA) is a by-product of polyamine metabolism and is phosphoryolytically cleaved to adenine and 5-deoxy-5-(methylthio)ribose-1-phosphate (MTR-1-P) by MTA phosphorylase. In eukaryotes, adenine is subsequently salvaged and converted to nucleotides, while MTR-1-P is converted to methionine. We examined 5'-deoxy-5'-substituted analogs of MTA for trypanocidal activity in vitro and in vivo. 5'-Deoxy-5'-(hydroxyethyl)thioadenosine (HETA) and its 5'-bromo,5'-chloro and 5'-fluoro derivatives were cleaved by extracts of the African trypanosome Trypanosoma brucei brucei (Km for MTA, 11.5 microM; Km for HETA, 13.2 microM) in a phosphate-dependent reaction. HETA and the three halo analogs were 50% inhibitory to growth at 0.5 to 5.0 microM in vitro. Inhibition of growth was reversible by exogenous methionine and 2-keto-4-methylthiobutyric acid, an intermediate in methionine synthesis from MTR-1-P. HETA was selected for further study in vivo. When administered by miniosmotic pump (25 to 150 mg/kg/day for 7 days) to mice infected with T. brucei brucei, HETA effected 70 to 90% cure rates. Results of this study indicate that these analogs of MTA are converted to trypanocidal MTR-1-P analogs and that this approach deserves further consideration in the development of novel chemotherapy of trypanosomiasis.

Full text

PDF
1315

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bacchi C. J., Garofalo J., Santana A., Hannan J. C., Bitonti A. J., McCann P. P. Trypanosoma brucei brucei: regulation of ornithine decarboxylase in procyclic forms and trypomastigotes. Exp Parasitol. 1989 May;68(4):392–402. doi: 10.1016/0014-4894(89)90124-0. [DOI] [PubMed] [Google Scholar]
  2. Bacchi C. J., Nathan H. C., Livingston T., Valladares G., Saric M., Sayer P. D., Njogu A. R., Clarkson A. B., Jr Differential susceptibility to DL-alpha-difluoromethylornithine in clinical isolates of Trypanosoma brucei rhodesiense. Antimicrob Agents Chemother. 1990 Jun;34(6):1183–1188. doi: 10.1128/aac.34.6.1183. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Backlund P. S., Jr, Smith R. A. Methionine synthesis from 5'-methylthioadenosine in rat liver. J Biol Chem. 1981 Feb 25;256(4):1533–1535. [PubMed] [Google Scholar]
  4. Bitonti A. J., Byers T. L., Bush T. L., Casara P. J., Bacchi C. J., Clarkson A. B., Jr, McCann P. P., Sjoerdsma A. Cure of Trypanosoma brucei brucei and Trypanosoma brucei rhodesiense infections in mice with an irreversible inhibitor of S-adenosylmethionine decarboxylase. Antimicrob Agents Chemother. 1990 Aug;34(8):1485–1490. doi: 10.1128/aac.34.8.1485. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Fish W. R., Looker D. L., Marr J. J., Berens R. L. Purine metabolism in the bloodstream forms of Trypanosoma gambiense and Trypanosoma rhodesiense. Biochim Biophys Acta. 1982 Nov 24;719(2):223–231. doi: 10.1016/0304-4165(82)90092-7. [DOI] [PubMed] [Google Scholar]
  6. Ghoda L. Y., Savarese T. M., Northup C. H., Parks R. E., Jr, Garofalo J., Katz L., Ellenbogen B. B., Bacchi C. J. Substrate specificities of 5'-deoxy-5'-methylthioadenosine phosphorylase from Trypanosoma brucei brucei and mammalian cells. Mol Biochem Parasitol. 1988 Jan 15;27(2-3):109–118. doi: 10.1016/0166-6851(88)90030-8. [DOI] [PubMed] [Google Scholar]
  7. Gottlieb M. Enzyme regulation in a trypanosomatid: effect of purine starvation on levels of 3'-nucleotidase activity. Science. 1985 Jan 4;227(4682):72–74. doi: 10.1126/science.2981117. [DOI] [PubMed] [Google Scholar]
  8. Kikugawa K., Iizuka K., Higuchi Y., Hirayama H., Ichino M. Platelet aggregation inhibitors. 2. Inhibition of platelet aggregation by 5'-, 2-, 6-, and 8-substituted adenosines. J Med Chem. 1972 Apr;15(4):387–390. doi: 10.1021/jm00274a015. [DOI] [PubMed] [Google Scholar]
  9. Koszalka G. W., Krenitsky T. A. 5'-Methylthioadenosine (MTA) phosphorylase from promastigotes of Leishmania donovani. Adv Exp Med Biol. 1986;195(Pt B):559–563. doi: 10.1007/978-1-4684-1248-2_87. [DOI] [PubMed] [Google Scholar]
  10. Kuhn R., Jahn W. Vom Adenosin abgeleitete Thioäther und S-Oxide. Chem Ber. 1965 Jun;98(6):1699–1704. doi: 10.1002/cber.19650980603. [DOI] [PubMed] [Google Scholar]
  11. Miller R. L., Sabourin C. L., Krenitsky T. A. Trypanosoma cruzi adenine nucleoside phosphorylase. Purification and substrate specificity. Biochem Pharmacol. 1987 Feb 15;36(4):553–560. doi: 10.1016/0006-2952(87)90366-2. [DOI] [PubMed] [Google Scholar]
  12. Montgomery J. A., Shortnacy A. T., Thomas H. J. Analogs of 5'-deoxy-5'-(methylthio)adenosine. J Med Chem. 1974 Nov;17(11):1197–1207. doi: 10.1021/jm00257a014. [DOI] [PubMed] [Google Scholar]
  13. Pegg A. E. Polyamine metabolism and its importance in neoplastic growth and a target for chemotherapy. Cancer Res. 1988 Feb 15;48(4):759–774. [PubMed] [Google Scholar]
  14. Pegg A. E., Williams-Ashman H. G. Phosphate-stimulated breakdown of 5'-methylthioadenosine by rat ventral prostate. Biochem J. 1969 Nov;115(2):241–247. doi: 10.1042/bj1150241. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Porter C. W., Sufrin J. R. Interference with polyamine biosynthesis and/or function by analogs of polyamines or methionine as a potential anticancer chemotherapeutic strategy. Anticancer Res. 1986 Jul-Aug;6(4):525–542. [PubMed] [Google Scholar]
  16. Riscoe M. K., Ferro A. J., Fitchen J. H. Analogs of 5-methylthioribose, a novel class of antiprotozoal agents. Antimicrob Agents Chemother. 1988 Dec;32(12):1904–1906. doi: 10.1128/aac.32.12.1904. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Riscoe M. K., Ferro A. J., Fitchen J. H. Methionine recycling as a target for antiprotozoal drug development. Parasitol Today. 1989 Oct;5(10):330–333. doi: 10.1016/0169-4758(89)90128-2. [DOI] [PubMed] [Google Scholar]
  18. Tang K. C., Mariuza R., Coward J. K. Synthesis and evaluation of some stable multisubstrate adducts as specific inhibitors of spermidine synthase. J Med Chem. 1981 Nov;24(11):1277–1284. doi: 10.1021/jm00143a003. [DOI] [PubMed] [Google Scholar]
  19. White M. W., Vandenbark A. A., Barney C. L., Ferro A. J. Structural analogs of 5'-methylthioadenosine as substrates and inhibitors of 5'-methylthioadenosine phosphorylase and as inhibitors of human lymphocyte transformation. Biochem Pharmacol. 1982 Feb 15;31(4):503–507. doi: 10.1016/0006-2952(82)90151-4. [DOI] [PubMed] [Google Scholar]
  20. Yarlett N., Bacchi C. J. Effect of DL-alpha-difluoromethylornithine on methionine cycle intermediates in Trypanosoma brucei brucei. Mol Biochem Parasitol. 1988 Jan 1;27(1):1–10. doi: 10.1016/0166-6851(88)90019-9. [DOI] [PubMed] [Google Scholar]
  21. Zweygarth E., Kaminsky R., Cheruiyot J. K. A simple and rapid method to initiate Trypanosoma brucei brucei and T. brucei evansi bloodstream form cultures. Acta Trop. 1989 May;46(3):205–206. doi: 10.1016/0001-706x(89)90037-5. [DOI] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES