Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1991 Aug;35(8):1527–1531. doi: 10.1128/aac.35.8.1527

Animal models in the evaluation of antimicrobial agents.

O Zak 1, T O'Reilly 1
PMCID: PMC245213  PMID: 1929323

Full text

PDF
1527

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barza M. A critique of animal models in antibiotic research. Scand J Infect Dis Suppl. 1978;(14):109–117. [PubMed] [Google Scholar]
  2. Bass R., Lehnert T. Basic requirements for the toxicity testing of antimicrobial agents. Eur J Clin Microbiol Infect Dis. 1990 Jul;9(7):488–491. doi: 10.1007/BF01964288. [DOI] [PubMed] [Google Scholar]
  3. Bergeron M. G. A review of models for the therapy of experimental infections. Scand J Infect Dis Suppl. 1978;(14):189–206. [PubMed] [Google Scholar]
  4. Boxenbaum H. Interspecies scaling, allometry, physiological time, and the ground plan of pharmacokinetics. J Pharmacokinet Biopharm. 1982 Apr;10(2):201–227. doi: 10.1007/BF01062336. [DOI] [PubMed] [Google Scholar]
  5. Carbon C. Significance of tissue levels for prediction of antibiotic efficacy and determination of dosage. Eur J Clin Microbiol Infect Dis. 1990 Jul;9(7):510–516. doi: 10.1007/BF01964293. [DOI] [PubMed] [Google Scholar]
  6. Dalhoff A., Ullmann U. Correlation between pharmacokinetics, pharmacodynamics and efficacy of antibacterial agents in animal models. Eur J Clin Microbiol Infect Dis. 1990 Jul;9(7):479–487. doi: 10.1007/BF01964287. [DOI] [PubMed] [Google Scholar]
  7. Dedrick R. L. Animal scale-up. J Pharmacokinet Biopharm. 1973 Oct;1(5):435–461. doi: 10.1007/BF01059667. [DOI] [PubMed] [Google Scholar]
  8. Drusano G. L. Role of pharmacokinetics in the outcome of infections. Antimicrob Agents Chemother. 1988 Mar;32(3):289–297. doi: 10.1128/aac.32.3.289. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Drusano G. L., Ryan P. A., Standiford H. C., Moody M. R., Schimpff S. C. Integration of selected pharmacologic and microbiologic properties of three new beta-lactam antibiotics: a hypothesis for rational comparison. Rev Infect Dis. 1984 May-Jun;6(3):357–363. doi: 10.1093/clinids/6.3.357. [DOI] [PubMed] [Google Scholar]
  10. Gerber A. U., Brugger H. P., Feller C., Stritzko T., Stalder B. Antibiotic therapy of infections due to Pseudomonas aeruginosa in normal and granulocytopenic mice: comparison of murine and human pharmacokinetics. J Infect Dis. 1986 Jan;153(1):90–97. doi: 10.1093/infdis/153.1.90. [DOI] [PubMed] [Google Scholar]
  11. Gerber A. U., Vastola A. P., Brandel J., Craig W. A. Selection of aminoglycoside-resistant variants of Pseudomonas aeruginosa in an in vivo model. J Infect Dis. 1982 Nov;146(5):691–697. doi: 10.1093/infdis/146.5.691. [DOI] [PubMed] [Google Scholar]
  12. Gerberding J. L., Sande M. A. Limitations of animal models in predicting beta-lactam efficacy for endocarditis and meningitis. Rev Infect Dis. 1986 Jul-Aug;8 (Suppl 3):S315–S318. doi: 10.1093/clinids/8.supplement_3.s315. [DOI] [PubMed] [Google Scholar]
  13. Girgis N. I., Farid Z., Mikhail I. A., Farrag I., Sultan Y., Kilpatrick M. E. Dexamethasone treatment for bacterial meningitis in children and adults. Pediatr Infect Dis J. 1989 Dec;8(12):848–851. doi: 10.1097/00006454-198912000-00004. [DOI] [PubMed] [Google Scholar]
  14. Gootz T. D. Discovery and development of new antimicrobial agents. Clin Microbiol Rev. 1990 Jan;3(1):13–31. doi: 10.1128/cmr.3.1.13. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. HARTER D. H., PETERSDORF R. G. A consideration of the pathogenesis of bacterial meningitis: review of experimental and clinical studies. Yale J Biol Med. 1960 Feb;32:280–309. [PMC free article] [PubMed] [Google Scholar]
  16. Hishikawa T., Kusunoki T., Tsuchiya K., Uzuka Y., Sakamoto T., Nagatake T., Matsumoto K. Application of mathematical model to experimental chemotherapy of fatal murine pneumonia. Antimicrob Agents Chemother. 1990 Feb;34(2):326–331. doi: 10.1128/aac.34.2.326. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kadurugamuwa J. L., Hengstler B., Zak O. Cerebrospinal fluid protein profile in experimental pneumococcal meningitis and its alteration by ampicillin and anti-inflammatory agents. J Infect Dis. 1989 Jan;159(1):26–34. doi: 10.1093/infdis/159.1.26. [DOI] [PubMed] [Google Scholar]
  18. Lebel M. H., Freij B. J., Syrogiannopoulos G. A., Chrane D. F., Hoyt M. J., Stewart S. M., Kennard B. D., Olsen K. D., McCracken G. H., Jr Dexamethasone therapy for bacterial meningitis. Results of two double-blind, placebo-controlled trials. N Engl J Med. 1988 Oct 13;319(15):964–971. doi: 10.1056/NEJM198810133191502. [DOI] [PubMed] [Google Scholar]
  19. Lebel M. H., Hoyt M. J., Waagner D. C., Rollins N. K., Finitzo T., McCracken G. H., Jr Magnetic resonance imaging and dexamethasone therapy for bacterial meningitis. Am J Dis Child. 1989 Mar;143(3):301–306. doi: 10.1001/archpedi.1989.02150150055017. [DOI] [PubMed] [Google Scholar]
  20. Leggett J. E., Fantin B., Ebert S., Totsuka K., Vogelman B., Calame W., Mattie H., Craig W. A. Comparative antibiotic dose-effect relations at several dosing intervals in murine pneumonitis and thigh-infection models. J Infect Dis. 1989 Feb;159(2):281–292. doi: 10.1093/infdis/159.2.281. [DOI] [PubMed] [Google Scholar]
  21. Miller A. K. In vivo evaluation of antibacterial chemotherapeutic substances. Adv Appl Microbiol. 1971;14:151–183. doi: 10.1016/s0065-2164(08)70543-4. [DOI] [PubMed] [Google Scholar]
  22. Mizen L., Woodnutt G., Kernutt I., Catherall E. J. Simulation of human serum pharmacokinetics of ticarcillin-clavulanic acid and ceftazidime in rabbits, and efficacy against experimental Klebsiella pneumoniae meningitis. Antimicrob Agents Chemother. 1989 May;33(5):693–699. doi: 10.1128/aac.33.5.693. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Mordenti J. Man versus beast: pharmacokinetic scaling in mammals. J Pharm Sci. 1986 Nov;75(11):1028–1040. doi: 10.1002/jps.2600751104. [DOI] [PubMed] [Google Scholar]
  24. Norden C. W. Lessons learned from animal models of osteomyelitis. Rev Infect Dis. 1988 Jan-Feb;10(1):103–110. doi: 10.1093/clinids/10.1.103. [DOI] [PubMed] [Google Scholar]
  25. O'Grady F. Animal models in the assessment of antimicrobial agents. J Antimicrob Chemother. 1976 Mar;2(1):1–3. doi: 10.1093/jac/2.1.1-a. [DOI] [PubMed] [Google Scholar]
  26. Roosendaal R., Bakker-Woudenberg I. A., van den Berghe-van Raffe M., Vink-van den Berg J. C., Michel B. M. Impact of the dosage schedule on the efficacy of ceftazidime, gentamicin and ciprofloxacin in Klebsiella pneumoniae pneumonia and septicemia in leukopenic rats. Eur J Clin Microbiol Infect Dis. 1989 Oct;8(10):878–887. doi: 10.1007/BF01963774. [DOI] [PubMed] [Google Scholar]
  27. Sawada Y., Hanano M., Sugiyama Y., Iga T. Prediction of the disposition of beta-lactam antibiotics in humans from pharmacokinetic parameters in animals. J Pharmacokinet Biopharm. 1984 Jun;12(3):241–261. doi: 10.1007/BF01061720. [DOI] [PubMed] [Google Scholar]
  28. Syrogiannopoulos G. A., Olsen K. D., Reisch J. S., McCracken G. H., Jr Dexamethasone in the treatment of experimental Haemophilus influenzae type b meningitis. J Infect Dis. 1987 Feb;155(2):213–219. doi: 10.1093/infdis/155.2.213. [DOI] [PubMed] [Google Scholar]
  29. Tsao M. M., Katz D. Central venous catheter-induced endocarditis: human correlate of the animal experimental model of endocarditis. Rev Infect Dis. 1984 Nov-Dec;6(6):783–790. doi: 10.1093/clinids/6.6.783. [DOI] [PubMed] [Google Scholar]
  30. Tunkel A. R., Scheld W. M. Applications of therapy in animal models to bacterial infection in human disease. Infect Dis Clin North Am. 1989 Sep;3(3):441–459. [PubMed] [Google Scholar]
  31. Täuber M. G., Khayam-Bashi H., Sande M. A. Effects of ampicillin and corticosteroids on brain water content, cerebrospinal fluid pressure, and cerebrospinal fluid lactate levels in experimental pneumococcal meningitis. J Infect Dis. 1985 Mar;151(3):528–534. doi: 10.1093/infdis/151.3.528. [DOI] [PubMed] [Google Scholar]
  32. Vogelman B., Gudmundsson S., Leggett J., Turnidge J., Ebert S., Craig W. A. Correlation of antimicrobial pharmacokinetic parameters with therapeutic efficacy in an animal model. J Infect Dis. 1988 Oct;158(4):831–847. doi: 10.1093/infdis/158.4.831. [DOI] [PubMed] [Google Scholar]
  33. Woodnutt G., Catherall E. J., Kernutt I., Mizen L. Temocillin efficacy in experimental Klebsiella pneumoniae meningitis after infusion into rabbit plasma to simulate antibiotic concentrations in human serum. Antimicrob Agents Chemother. 1988 Nov;32(11):1705–1709. doi: 10.1128/aac.32.11.1705. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Zak O., O'Reilly T. Animal models as predictors of the safety and efficacy of antibiotics. Eur J Clin Microbiol Infect Dis. 1990 Jul;9(7):472–478. doi: 10.1007/BF01964286. [DOI] [PubMed] [Google Scholar]
  35. Zak O. Scope and limitations of experimental chemotherapy. Experientia. 1980 Apr 15;36(4):479–483. doi: 10.1007/BF01975159. [DOI] [PubMed] [Google Scholar]
  36. Zak O., Tosch W., Sande M. A. Correlation of antibacterial activities of antibiotics in vitro and in animal models of infection. J Antimicrob Chemother. 1985 Jan;15 (Suppl A):273–282. doi: 10.1093/jac/15.suppl_a.273. [DOI] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES