Abstract
The formation of acceptor for the N epsilon-(D-Ala)-acceptor transpeptidase is an essential feature of nascent peptidoglycan processing. In Gaffkya homari the synthesis of cross-bridges in peptidoglycan includes a variety of penicillin-sensitive enzymes, e.g., transpeptidase, DD-carboxypeptidase, and LD-carboxypeptidase. To determine the primary target, we grew cultures in the presence of the MICs of benzylpenicillin (0.2 microgram/ml), methicillin (10 micrograms/ml), cephalothin (5 micrograms/ml), and cefoxitin (25 micrograms/ml) and examined the monomer-dimer composition of each peptidoglycan by high-performance liquid chromatography after muramidase digestion. From these studies it was recognized that of all the dimers, the synthesis of the predominant cross-bridge, diamidated octapeptide (-Ala-iso-D-Gln-Lys-D-Ala -Ala-iso-D-Gln-Lys-D-Ala), is most sensitive to the action of the beta-lactam at its MIC. The enhanced deamidation of the acceptor tetrapeptide, one of the substrates for the transpeptidase, is correlated with the inhibition of this cross-bridge. For example, at the MIC of benzylpenicillin, the ratio of amidated tetrapeptide to nonamidated tetrapeptide decreased from 2.8 in the control to 1.0 in the treated culture. From these results it would appear that a decrease in preferred acceptor for the transpeptidase results in the inhibition of synthesis of this major cross-bridge. Thus, the metabolism of the amide function of the monomer peptides may represent an additional feature of processing in the assembly of cross-bridged dimers in the peptidoglycan of this organism that is sensitive to the action of beta-lactam.
Full text
PDF






Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bardin C., Sinha R. K., Kalomiris E., Neuhaus F. C. Biosynthesis of peptidoglycan in Gaffkya homari: processing of nascent glycan by reactivated membranes. J Bacteriol. 1984 Feb;157(2):398–404. doi: 10.1128/jb.157.2.398-404.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Carpenter C. V., Goyer S., Neuhaus F. C. Steric effects on penicillin-sensitive peptidoglycan synthesis in a membrane-wall system Gaffkya homari. Biochemistry. 1976 Jul 13;15(14):3146–3152. doi: 10.1021/bi00659a031. [DOI] [PubMed] [Google Scholar]
- Dezélée P., Shockman G. D. Studies of the formation of peptide cross-links in the cell wall peptidoglycan of Streptococcus faecalis. J Biol Chem. 1975 Sep 10;250(17):6806–6816. [PubMed] [Google Scholar]
- Ghuysen J. M., Leyh-Bouille M., Campbell J. N., Moreno R., Frére J. M., Duez C., Nieto M., Perkins H. R. Structure of the wall peptidoglycan of Streptomyces R39 and the specificity profile of its exocellular DD-carboxypeptidase--transpeptidase for peptide acceptors. Biochemistry. 1973 Mar 27;12(7):1243–1251. doi: 10.1021/bi00731a001. [DOI] [PubMed] [Google Scholar]
- Glauner B., Höltje J. V., Schwarz U. The composition of the murein of Escherichia coli. J Biol Chem. 1988 Jul 25;263(21):10088–10095. [PubMed] [Google Scholar]
- Glauner B. Separation and quantification of muropeptides with high-performance liquid chromatography. Anal Biochem. 1988 Aug 1;172(2):451–464. doi: 10.1016/0003-2697(88)90468-x. [DOI] [PubMed] [Google Scholar]
- Hammes W. P. Biosynthesis of peptidoglycan in Gaffkya homari. The mode of action of penicillin G and mecillinam. Eur J Biochem. 1976 Nov 1;70(1):107–113. doi: 10.1111/j.1432-1033.1976.tb10961.x. [DOI] [PubMed] [Google Scholar]
- Hammes W. P., Neuhaus F. C. Biosynthesis of peptidoglycan in Gaffkya homari: role of the peptide subunit of uridine diphosphate-N-acetylmuramyl-pentapeptide. J Bacteriol. 1974 Oct;120(1):210–218. doi: 10.1128/jb.120.1.210-218.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hammes W. P., Seidel H. The activities in vitro of DD-carboxypeptidase and LD-carboxypeptidase of Gaffkya homari during biosynthesis of peptidoglycan. Eur J Biochem. 1978 Mar;84(1):141–147. doi: 10.1111/j.1432-1033.1978.tb12150.x. [DOI] [PubMed] [Google Scholar]
- Heinrikson R. L., Meredith S. C. Amino acid analysis by reverse-phase high-performance liquid chromatography: precolumn derivatization with phenylisothiocyanate. Anal Biochem. 1984 Jan;136(1):65–74. doi: 10.1016/0003-2697(84)90307-5. [DOI] [PubMed] [Google Scholar]
- Jacob G. S., Schaefer J., Wilson G. E., Jr Direct measurement of peptidoglycan cross-linking in bacteria by 15N nuclear magnetic resonance. J Biol Chem. 1983 Sep 25;258(18):10824–10826. [PubMed] [Google Scholar]
- Kalomiris E., Bardin C., Neuhaus F. C. Biosynthesis of peptidoglycan in Gaffkya homari: reactivation of membranes by freeze-thawing in the presence and absence of walls. J Bacteriol. 1982 May;150(2):535–544. doi: 10.1128/jb.150.2.535-544.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kelly K. F., Evans J. B. Deoxyribonucleic acid homology among strains of the lobster pathogen 'Gaffkya homari' and Aerococcus viridans. J Gen Microbiol. 1974 Mar;81(1):257–260. doi: 10.1099/00221287-81-1-257. [DOI] [PubMed] [Google Scholar]
- Nakel M., Ghuysen J. M., Kandler O. Wall peptidoglycan in Aerococcus viridans strains 201 Evans and ATCC 11563 and in Gaffkya homari strain ATCC 10400. Biochemistry. 1971 May 25;10(11):2170–2175. doi: 10.1021/bi00787a033. [DOI] [PubMed] [Google Scholar]
- Siewert G., Strominger J. L. Biosynthesis of the peptidoglycan of bacterial cell walls. XI. Formation of the isoglutamine amide group in the cell walls of Staphylococcus aureus. J Biol Chem. 1968 Feb 25;243(4):783–790. [PubMed] [Google Scholar]
- Tipper D. J., Katz W., Strominger J. L., Ghuysen J. M. Substituents on the alpha-carboxyl group of D-glutamic acid in the peptidoglycan of several bacterial cell walls. Biochemistry. 1967 Mar;6(3):921–929. doi: 10.1021/bi00855a036. [DOI] [PubMed] [Google Scholar]
- Tipper D. J., Strominger J. L. Mechanism of action of penicillins: a proposal based on their structural similarity to acyl-D-alanyl-D-alanine. Proc Natl Acad Sci U S A. 1965 Oct;54(4):1133–1141. doi: 10.1073/pnas.54.4.1133. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wilson G. E., Jr, Jacob G. S., Schaefer J. Solid-state 15N NMR studies of the effects of penicillin on cell-wall metabolism of Aerococcus viridans (Gaffkya homari). Biochem Biophys Res Commun. 1985 Feb 15;126(3):1006–1012. doi: 10.1016/0006-291x(85)90285-2. [DOI] [PubMed] [Google Scholar]
- Wrezel P. W., Ellis L. F., Neuhaus F. C. In vivo target of benzylpenicillin in Gaffkya homari. Antimicrob Agents Chemother. 1986 Mar;29(3):432–439. doi: 10.1128/aac.29.3.432. [DOI] [PMC free article] [PubMed] [Google Scholar]
