Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1991 Oct;35(10):1953–1959. doi: 10.1128/aac.35.10.1953

Antibiotic tissue penetration and its relevance: impact of tissue penetration on infection response.

D E Nix 1, S D Goodwin 1, C A Peloquin 1, D L Rotella 1, J J Schentag 1
PMCID: PMC245307  PMID: 1759813

Full text

PDF
1953

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adhami Z. N., Wise R., Weston D., Crump B. The pharmacokinetics and tissue penetration of norfloxacin. J Antimicrob Chemother. 1984 Jan;13(1):87–92. doi: 10.1093/jac/13.1.87. [DOI] [PubMed] [Google Scholar]
  2. Anderson E. T., Young L. S., Hewitt W. L. Simultaneous antibiotic levels in "breakthrough" gram-negative rod bacteremia. Am J Med. 1976 Oct;61(4):493–497. doi: 10.1016/0002-9343(76)90328-4. [DOI] [PubMed] [Google Scholar]
  3. BERSON S. A., YALOW R. S., SCHREIBER S. S., POST J. Tracer experiments with I131 labeled human serum albumin: distribution and degradation studies. J Clin Invest. 1953 Aug;32(8):746–768. doi: 10.1172/JCI102789. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Barza M., Brusch J., Bergeron M. G., Weinstein L. Penetration of antibiotics into fibrin loci in vivo. 3. Intermittent vs. continuous infusion and the effect of probenecid. J Infect Dis. 1974 Jan;129(1):73–78. doi: 10.1093/infdis/129.1.73. [DOI] [PubMed] [Google Scholar]
  5. Barza M., Cuchural G. General principles of antibiotic tissue penetration. J Antimicrob Chemother. 1985 Jan;15 (Suppl A):59–75. doi: 10.1093/jac/15.suppl_a.59. [DOI] [PubMed] [Google Scholar]
  6. Bennett J. V., Kirby W. M. A rapid, modified ultrafiltration method for determining serum protein binding and its application to new penicillins. J Lab Clin Med. 1965 Nov;66(5):721–732. [PubMed] [Google Scholar]
  7. Bennett W. M., Plamp C. E., Gilbert D. N., Parker R. A., Porter G. A. The influence of dosage regimen on experimental gentamicin nephrotoxicity: dissociation of peak serum levels from renal failure. J Infect Dis. 1979 Oct;140(4):576–580. doi: 10.1093/infdis/140.4.576. [DOI] [PubMed] [Google Scholar]
  8. Bergeron M. G. Tissue penetration of antibiotics. Clin Biochem. 1986 Apr;19(2):90–100. doi: 10.1016/s0009-9120(86)80054-6. [DOI] [PubMed] [Google Scholar]
  9. Brier M. E., Mayer P. R., Brier R. A., Visscher D., Luft F. C., Aronoff G. R. Relationship between rat renal accumulation of gentamicin, tobramycin, and netilmicin and their nephrotoxicities. Antimicrob Agents Chemother. 1985 May;27(5):812–816. doi: 10.1128/aac.27.5.812. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Brown K. N., Percival A. Penetration of antimicrobials into tissue culture cells and leucocytes. Scand J Infect Dis Suppl. 1978;(14):251–260. [PubMed] [Google Scholar]
  11. Bryant R. E., Hammond D. Interaction of purulent material with antibiotics used to treat Pseudomonas infections. Antimicrob Agents Chemother. 1974 Dec;6(6):702–707. doi: 10.1128/aac.6.6.702. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Carbon C., Chau N. P., Contrepois A., Lamotte-Barrillon S. Tissue cage experiments with beta-lactam antibiotics in rabbits. Scand J Infect Dis Suppl. 1978;(14):127–134. [PubMed] [Google Scholar]
  13. Chambers H. F., Mills J., Drake T. A., Sande M. A. Failure of a once-daily regimen of cefonicid for treatment of endocarditis due to Staphylococcus aureus. Rev Infect Dis. 1984 Nov-Dec;6 (Suppl 4):S870–S874. doi: 10.1093/clinids/6.supplement_4.s870. [DOI] [PubMed] [Google Scholar]
  14. Craig W. A., Kunin C. M. Significance of serum protein and tissue binding of antimicrobial agents. Annu Rev Med. 1976;27:287–300. doi: 10.1146/annurev.me.27.020176.001443. [DOI] [PubMed] [Google Scholar]
  15. Craig W. A., Suh B. Theory and practical impact of binding of antimicrobials to serum proteins and tissue. Scand J Infect Dis Suppl. 1978;(14):92–99. [PubMed] [Google Scholar]
  16. Craig W. A., Welling P. G. Protein binding of antimicrobials: clinical pharmacokinetic and therapeutic implications. Clin Pharmacokinet. 1977 Jul-Aug;2(4):252–268. doi: 10.2165/00003088-197702040-00002. [DOI] [PubMed] [Google Scholar]
  17. Crump B., Wise R., Dent J. Pharmacokinetics and tissue penetration of ciprofloxacin. Antimicrob Agents Chemother. 1983 Nov;24(5):784–786. doi: 10.1128/aac.24.5.784. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Cynamon M. H., Swenson C. E., Palmer G. S., Ginsberg R. S. Liposome-encapsulated-amikacin therapy of Mycobacterium avium complex infection in beige mice. Antimicrob Agents Chemother. 1989 Aug;33(8):1179–1183. doi: 10.1128/aac.33.8.1179. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Deziel-Evans L. M., Murphy J. E., Job M. L. Correlation of pharmacokinetic indices with therapeutic outcome in patients receiving aminoglycosides. Clin Pharm. 1986 Apr;5(4):319–324. [PubMed] [Google Scholar]
  20. Drusano G. L. Role of pharmacokinetics in the outcome of infections. Antimicrob Agents Chemother. 1988 Mar;32(3):289–297. doi: 10.1128/aac.32.3.289. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Drusano G. L., Ryan P. A., Standiford H. C., Moody M. R., Schimpff S. C. Integration of selected pharmacologic and microbiologic properties of three new beta-lactam antibiotics: a hypothesis for rational comparison. Rev Infect Dis. 1984 May-Jun;6(3):357–363. doi: 10.1093/clinids/6.3.357. [DOI] [PubMed] [Google Scholar]
  22. Easmon C. S., Crane J. P., Blowers A. Effect of ciprofloxacin on intracellular organisms: in-vitro and in-vivo studies. J Antimicrob Chemother. 1986 Nov;18 (Suppl 500):43–48. doi: 10.1093/jac/18.supplement_d.43. [DOI] [PubMed] [Google Scholar]
  23. Eickenberg H. U. What is interstitial fluid? Biochemical and physiological analysis of fluid obtained from tissue cages. Scand J Infect Dis Suppl. 1978;(14):166–170. [PubMed] [Google Scholar]
  24. Fleishaker J. C., McNamara P. J. Performance of a diffusional clearance model for beta-lactam antimicrobial agents as influenced by extravascular protein binding and interstitial fluid kinetics. Antimicrob Agents Chemother. 1985 Sep;28(3):369–374. doi: 10.1128/aac.28.3.369. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Forsgren A., Bellahsène A. Antibiotic accumulation in human polymorphonuclear leucocytes and lymphocytes. Scand J Infect Dis Suppl. 1985;44:16–23. [PubMed] [Google Scholar]
  26. Frongillo R. F., Galuppo L., Moretti A. Suction skin blister, skin window, and skin chamber techniques to determine extravascular passage of cefotaxime in humans. Antimicrob Agents Chemother. 1981 Jan;19(1):22–28. doi: 10.1128/aac.19.1.22. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Gengo F. M., Mannion T. W., Nightingale C. H., Schentag J. J. Integration of pharmacokinetics and pharmacodynamics of methicillin in curative treatment of experimental endocarditis. J Antimicrob Chemother. 1984 Dec;14(6):619–631. doi: 10.1093/jac/14.6.619. [DOI] [PubMed] [Google Scholar]
  28. Gengo F. M., Schentag J. J. Rate of methicillin penetration into normal heart valve and experimental endocarditis lesions. Antimicrob Agents Chemother. 1982 Mar;21(3):456–459. doi: 10.1128/aac.21.3.456. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Gerding D. N., Hall W. H., Schierl E. A., Manion R. E. Cephalosporin and aminoglycoside concentrations in peritoneal capsular fluid in rabbits. Antimicrob Agents Chemother. 1976 Dec;10(6):902–911. doi: 10.1128/aac.10.6.902. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Gerding D. N., Peterson L. R., Legler D. C., Hall W. H., Schierl E. A. Ascitic fluid cephalosporin concentrations: influence of protein binding and serum pharmacokinetics. Antimicrob Agents Chemother. 1978 Aug;14(2):234–239. doi: 10.1128/aac.14.2.234. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Gilbert D. N., Kutscher E., Ireland P., Barnett J. A., Sanford J. P. Effect of the concentrations of magnesium and calcium on the in-vitro susceptibility of Pseudomonas aeruginosa to gentamicin. J Infect Dis. 1971 Dec;124 (Suppl):S37–S45. doi: 10.1093/infdis/124.supplement_1.s37. [DOI] [PubMed] [Google Scholar]
  32. Giuliano R. A., Paulus G. J., Verpooten G. A., Pattyn V. M., Pollet D. E., Nouwen E. J., Laurent G., Carlier M. B., Maldague P., Tulkens P. M. Recovery of cortical phospholipidosis and necrosis after acute gentamicin loading in rats. Kidney Int. 1984 Dec;26(6):838–847. doi: 10.1038/ki.1984.226. [DOI] [PubMed] [Google Scholar]
  33. Gordon R. C., Regamey C., Kirby W. M. Serum protein binding of the aminoglycoside antibiotics. Antimicrob Agents Chemother. 1972 Sep;2(3):214–216. doi: 10.1128/aac.2.3.214. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Hand W. L., King-Thompson N. L. Contrasts between phagocyte antibiotic uptake and subsequent intracellular bactericidal activity. Antimicrob Agents Chemother. 1986 Jan;29(1):135–140. doi: 10.1128/aac.29.1.135. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Howell A., Sutherland R., Rolinson G. N. Effect of protein binding on levels of ampicillin and cloxacillin in synovial fluid. Clin Pharmacol Ther. 1972 Sep-Oct;13(5):724–732. doi: 10.1002/cpt1972135part1724. [DOI] [PubMed] [Google Scholar]
  36. Jacobs R. F., Wilson C. B. Intracellular penetration and antimicrobial activity of antibiotics. J Antimicrob Chemother. 1983 Oct;12 (Suppl 100):13–20. doi: 10.1093/jac/12.suppl_c.13. [DOI] [PubMed] [Google Scholar]
  37. Klemens S. P., Cynamon M. H., Swenson C. E., Ginsberg R. S. Liposome-encapsulated-gentamicin therapy of Mycobacterium avium complex infection in beige mice. Antimicrob Agents Chemother. 1990 Jun;34(6):967–970. doi: 10.1128/aac.34.6.967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Kunin C. M. Clinical pharmacology of the new penicillins. 1. The importance of serum protein binding in determining antimicrobial activity and concentration in serum. Clin Pharmacol Ther. 1966 Mar-Apr;7(2):166–179. doi: 10.1002/cpt196672166. [DOI] [PubMed] [Google Scholar]
  39. Kunin C. M. Clinical significance of protein binding of the penicillins. Ann N Y Acad Sci. 1967 Sep 27;145(2):282–290. doi: 10.1111/j.1749-6632.1967.tb50225.x. [DOI] [PubMed] [Google Scholar]
  40. Kunin C. M., Craig W. A., Kornguth M., Monson R. Influence of binding on the pharmacologic activity of antibiotics. Ann N Y Acad Sci. 1973 Nov 26;226:214–224. doi: 10.1111/j.1749-6632.1973.tb20483.x. [DOI] [PubMed] [Google Scholar]
  41. Kurz H., Trunk H., Weitz B. Evaluation of methods to determine protein-binding of drugs. Equilibrium dialysis, ultrafiltration, ultracentrifugation, gel filtration. Arzneimittelforschung. 1977 Jul;27(7):1373–1380. [PubMed] [Google Scholar]
  42. Laurent G., Carlier M. B., Rollman B., Van Hoof F., Tulkens P. Mechanism of aminoglycoside-induced lysosomal phospholipidosis: in vitro and in vivo studies with gentamicin and amikacin. Biochem Pharmacol. 1982 Dec 1;31(23):3861–3870. doi: 10.1016/0006-2952(82)90303-3. [DOI] [PubMed] [Google Scholar]
  43. LeBel M., Vallée F., Bergeron M. G. Tissue penetration of ciprofloxacin after single and multiple doses. Antimicrob Agents Chemother. 1986 Mar;29(3):501–505. doi: 10.1128/aac.29.3.501. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Luft F. C., Kleit S. A. Renal parenchymal accumulation of aminoglycoside antibiotics in rats. J Infect Dis. 1974 Dec;130(6):656–659. doi: 10.1093/infdis/130.6.656. [DOI] [PubMed] [Google Scholar]
  45. Mandell G. L. Interaction of intraleukocytic bacteria and antibiotics. J Clin Invest. 1973 Jul;52(7):1673–1679. doi: 10.1172/JCI107348. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Mattie H., Goslings W. R., Noach E. L. Cloxacillin and nafcillin: serum binding and its relationship to antibacterial effect in mice. J Infect Dis. 1973 Aug;128(2):170–177. doi: 10.1093/infdis/128.2.170. [DOI] [PubMed] [Google Scholar]
  47. McCormack J. P., Schentag J. J. Potential impact of quantitative susceptibility tests on the design of aminoglycoside dosing regimens. Drug Intell Clin Pharm. 1987 Feb;21(2):187–192. [PubMed] [Google Scholar]
  48. McNamara P. J., Lalka D., Gibaldi M. Endogenous accumulation products and serum protein binding in uremia. J Lab Clin Med. 1981 Nov;98(5):730–740. [PubMed] [Google Scholar]
  49. Merrikin D. J., Briant J., Rolinson G. N. Effect of protein binding on antibiotic activity in vivo. J Antimicrob Chemother. 1983 Mar;11(3):233–238. doi: 10.1093/jac/11.3.233. [DOI] [PubMed] [Google Scholar]
  50. Michéa-Hamzehpour M., Auckenthaler R., Regamey P., Pechère J. C. Resistance occurring after fluoroquinolone therapy of experimental Pseudomonas aeruginosa peritonitis. Antimicrob Agents Chemother. 1987 Nov;31(11):1803–1808. doi: 10.1128/aac.31.11.1803. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Minuth J. N., Musher D. M., Thorsteinsson S. B. Inhibition of the antibacterial activity of gentamicin by urine. J Infect Dis. 1976 Jan;133(1):14–21. doi: 10.1093/infdis/133.1.14. [DOI] [PubMed] [Google Scholar]
  52. Moore R. D., Lietman P. S., Smith C. R. Clinical response to aminoglycoside therapy: importance of the ratio of peak concentration to minimal inhibitory concentration. J Infect Dis. 1987 Jan;155(1):93–99. doi: 10.1093/infdis/155.1.93. [DOI] [PubMed] [Google Scholar]
  53. Neu H. C. Current practices in antimicrobial dosing. Rev Infect Dis. 1981 Jan-Feb;3(1):12–18. doi: 10.1093/clinids/3.1.12. [DOI] [PubMed] [Google Scholar]
  54. Neuman M. Clinical pharmacokinetics of the newer antibacterial 4-quinolones. Clin Pharmacokinet. 1988 Feb;14(2):96–121. doi: 10.2165/00003088-198814020-00003. [DOI] [PubMed] [Google Scholar]
  55. Nix D. E., Goodwin S. D., Peloquin C. A., Rotella D. L., Schentag J. J. Antibiotic tissue penetration and its relevance: models of tissue penetration and their meaning. Antimicrob Agents Chemother. 1991 Oct;35(10):1947–1952. doi: 10.1128/aac.35.10.1947. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Nix D. E., Sands M. F., Peloquin C. A., Vari A. J., Cumbo T. J., Vance J. W., Fracasso J. E., Schentag J. J. Dual individualization of intravenous ciprofloxacin in patients with nosocomial lower respiratory tract infections. Am J Med. 1987 Apr 27;82(4A):352–356. [PubMed] [Google Scholar]
  57. Nix D. E., Schentag J. J. The quinolones: an overview and comparative appraisal of their pharmacokinetics and pharmacodynamics. J Clin Pharmacol. 1988 Feb;28(2):169–178. doi: 10.1002/j.1552-4604.1988.tb05740.x. [DOI] [PubMed] [Google Scholar]
  58. Noone P., Parsons T. M., Pattison J. R., Slack R. C., Garfield-Davies D., Hughes K. Experience in monitoring gentamicin therapy during treatment of serious gram-negative sepsis. Br Med J. 1974 Mar 16;1(5906):477–481. doi: 10.1136/bmj.1.5906.477. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. Norrby R. A review of the penetration of antibiotics into CSF and its clinical significance. Scand J Infect Dis Suppl. 1978;(14):296–309. [PubMed] [Google Scholar]
  60. Ogren S., Cars O. Importance of drug-protein interactions and protein concentrations for antibiotic levels in serum and tissue fluid. Scand J Infect Dis Suppl. 1985;44:34–40. [PubMed] [Google Scholar]
  61. Peloquin C. A., Cumbo T. J., Nix D. E., Sands M. F., Schentag J. J. Evaluation of intravenous ciprofloxacin in patients with nosocomial lower respiratory tract infections. Impact of plasma concentrations, organism, minimum inhibitory concentration, and clinical condition on bacterial eradication. Arch Intern Med. 1989 Oct;149(10):2269–2273. [PubMed] [Google Scholar]
  62. Peterson L. R., Gerding D. N. Influence of protein binding of antibiotics on serum pharmacokinetics and extravascular penetration: clinically useful concepts. Rev Infect Dis. 1980 May-Jun;2(3):340–348. doi: 10.1093/clinids/2.3.340. [DOI] [PubMed] [Google Scholar]
  63. Peterson L. R., Gerding D. N. Prediction of cefazolin penetration in high- and low-protein-containing extravascular fluid: new method for performing simultaneous studies. Antimicrob Agents Chemother. 1978 Oct;14(4):533–538. doi: 10.1128/aac.14.4.533. [DOI] [PMC free article] [PubMed] [Google Scholar]
  64. Peterson L. R., Gerding D. N., Zinneman H. H., Moore B. M. Evaluation of three newer methods for investigating protein interactions of penicillin G. Antimicrob Agents Chemother. 1977 Jun;11(6):993–998. doi: 10.1128/aac.11.6.993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  65. Peterson L. R., Van Etta L. L., Fasching C. E., Gerding D. N. Effect of protein binding on simulated intravascular and extravascular kinetics of cefotaxime in an in vitro model. Antimicrob Agents Chemother. 1984 Jan;25(1):58–61. doi: 10.1128/aac.25.1.58. [DOI] [PMC free article] [PubMed] [Google Scholar]
  66. Prokesch R. C., Hand W. L. Antibiotic entry into human polymorphonuclear leukocytes. Antimicrob Agents Chemother. 1982 Mar;21(3):373–380. doi: 10.1128/aac.21.3.373. [DOI] [PMC free article] [PubMed] [Google Scholar]
  67. Raeburn J. A. A method for studying antibiotic concentrations in inflammatory exudate. J Clin Pathol. 1971 Oct;24(7):633–635. doi: 10.1136/jcp.24.7.633. [DOI] [PMC free article] [PubMed] [Google Scholar]
  68. Ramirez-Ronda C. H., Holmes R. K., Sanford J. P. Effects of divalent cations on binding of aminoglycoside antibiotics to human serum proteins and to bacteria. Antimicrob Agents Chemother. 1975 Mar;7(3):239–245. doi: 10.1128/aac.7.3.239. [DOI] [PMC free article] [PubMed] [Google Scholar]
  69. Reidenberg M. M., Drayer D. E. Alteration of drug-protein binding in renal disease. Clin Pharmacokinet. 1984 Jan;9 (Suppl 1):18–26. doi: 10.2165/00003088-198400091-00003. [DOI] [PubMed] [Google Scholar]
  70. Reitberg D. P., Cumbo T. J., Smith I. L., Schentag J. J. Effect of protein binding on cefmenoxime steady-state kinetics in critical patients. Clin Pharmacol Ther. 1984 Jan;35(1):64–73. doi: 10.1038/clpt.1984.10. [DOI] [PubMed] [Google Scholar]
  71. Roosendaal R., Bakker-Woudenberg I. A., van den Berghe-van Raffe M., Michel M. F. Continuous versus intermittent administration of ceftazidime in experimental Klebsiella pneumoniae pneumonia in normal and leukopenic rats. Antimicrob Agents Chemother. 1986 Sep;30(3):403–408. doi: 10.1128/aac.30.3.403. [DOI] [PMC free article] [PubMed] [Google Scholar]
  72. Ryan D. M., Cars O. A problem in the interpretation of beta-lactam antibiotic levels in tissues. J Antimicrob Chemother. 1983 Sep;12(3):281–284. doi: 10.1093/jac/12.3.281. [DOI] [PubMed] [Google Scholar]
  73. Ryan D. M., Cars O. Antibiotic assays in muscle: are conventional tissue levels misleading as indicator of the antibacterial activity? Scand J Infect Dis. 1980;12(4):307–309. doi: 10.3109/inf.1980.12.issue-4.12. [DOI] [PubMed] [Google Scholar]
  74. Ryan D. M., Cars O., Hoffstedt B. The use of antibiotic serum levels to predict concentrations in tissues. Scand J Infect Dis. 1986;18(5):381–388. doi: 10.3109/00365548609032352. [DOI] [PubMed] [Google Scholar]
  75. Ryan D. M., Hodges B., Spencer G. R., Harding S. M. Simultaneous comparison of three methods for assessing ceftazidime penetration into extravascular fluid. Antimicrob Agents Chemother. 1982 Dec;22(6):995–998. doi: 10.1128/aac.22.6.995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  76. Ryan D. M. Influence of surface area/volume ratio on the kinetics of antibiotics in different tissues and tissue fluids. Scand J Infect Dis Suppl. 1985;44:24–33. [PubMed] [Google Scholar]
  77. Rylander M., Holm S. E., Norrby R., Brorson J. E. Studies on the pharmacokinetics of cefoxitin, cefuroxime, cephaloridine and cephalothin using subcutaneous tissue cages. Scand J Infect Dis Suppl. 1978;(13):52–57. [PubMed] [Google Scholar]
  78. Schentag J. J. Clinical significance of antibiotic tissue penetration. Clin Pharmacokinet. 1989;16 (Suppl 1):25–31. doi: 10.2165/00003088-198900161-00005. [DOI] [PubMed] [Google Scholar]
  79. Schentag J. J., Cumbo T. J., Jusko W. J., Plaut M. E. Gentamicin tissue accumulation and nephrotoxic reactions. JAMA. 1978 Nov 3;240(19):2067–2069. [PubMed] [Google Scholar]
  80. Schentag J. J., Jusko W. J., Vance J. W., Cumbo T. J., Abrutyn E., DeLattre M., Gerbracht L. M. Gentamicin disposition and tissue accumulation on multiple dosing. J Pharmacokinet Biopharm. 1977 Dec;5(6):559–577. doi: 10.1007/BF01059684. [DOI] [PubMed] [Google Scholar]
  81. Schentag J. J., Smith I. L., Swanson D. J., DeAngelis C., Fracasso J. E., Vari A., Vance J. W. Role for dual individualization with cefmenoxime. Am J Med. 1984 Dec 21;77(6A):43–50. doi: 10.1016/s0002-9343(84)80074-1. [DOI] [PubMed] [Google Scholar]
  82. Schentag J. J., Swanson D. J., Smith I. L. Dual individualization: antibiotic dosage calculation from the integration of in-vitro pharmacodynamics and in-vivo pharmacokinetics. J Antimicrob Chemother. 1985 Jan;15 (Suppl A):47–57. doi: 10.1093/jac/15.suppl_a.47. [DOI] [PubMed] [Google Scholar]
  83. Shyu W. C., Quintiliani R., Nightingale C. H., Dudley M. N. Effect of protein binding on drug penetration into blister fluid. Antimicrob Agents Chemother. 1988 Jan;32(1):128–130. doi: 10.1128/aac.32.1.128. [DOI] [PMC free article] [PubMed] [Google Scholar]
  84. Sjöholm I., Kober A., Odar-Cederlöf I., Borgåa O. Protein binding of drugs in uremic and normal serum: the role of endogenous binding inhibitors. Biochem Pharmacol. 1976 May 15;25(10):1205–1213. doi: 10.1016/0006-2952(76)90370-1. [DOI] [PubMed] [Google Scholar]
  85. Tan J. S., Trott A., Phair J. P., Watanakunakorn C. A method for measurement of antibiotics in human interstitial fluid. J Infect Dis. 1972 Nov;126(5):492–497. doi: 10.1093/infdis/126.5.492. [DOI] [PubMed] [Google Scholar]
  86. Van Etta L. L., Fasching C. E., Peterson L. R., Gerding D. N. Comparison study of the kinetics of ceftizoxime penetration into extravascular spaces with known surface area/volume ratio in vitro and in vivo in rabbits. Antimicrob Agents Chemother. 1983 Jan;23(1):49–53. doi: 10.1128/aac.23.1.49. [DOI] [PMC free article] [PubMed] [Google Scholar]
  87. Van Etta L. L., Peterson L. R., Fasching C. E., Gerding D. N. Effect of the ratio of surface area to volume on the penetration of antibiotics in to extravascular spaces in an in vitro model. J Infect Dis. 1982 Sep;146(3):423–428. doi: 10.1093/infdis/146.3.423. [DOI] [PubMed] [Google Scholar]
  88. Van der Auwera P., Petrikkos G., Matsumoto T., Husson M. Influence of LY146032 on human polymorphonuclear leucocytes in vitro. J Antimicrob Chemother. 1988 Jan;21(1):57–63. doi: 10.1093/jac/21.1.57. [DOI] [PubMed] [Google Scholar]
  89. Verbist L., Tjandramaga B., Hendrickx B., Van Hecken A., Van Melle P., Verbesselt R., Verhaegen J., De Schepper P. J. In vitro activity and human pharmacokinetics of teicoplanin. Antimicrob Agents Chemother. 1984 Dec;26(6):881–886. doi: 10.1128/aac.26.6.881. [DOI] [PMC free article] [PubMed] [Google Scholar]
  90. Vogelman B., Gudmundsson S., Leggett J., Turnidge J., Ebert S., Craig W. A. Correlation of antimicrobial pharmacokinetic parameters with therapeutic efficacy in an animal model. J Infect Dis. 1988 Oct;158(4):831–847. doi: 10.1093/infdis/158.4.831. [DOI] [PubMed] [Google Scholar]
  91. Vogelman B., Gudmundsson S., Turnidge J., Leggett J., Craig W. A. In vivo postantibiotic effect in a thigh infection in neutropenic mice. J Infect Dis. 1988 Feb;157(2):287–298. doi: 10.1093/infdis/157.2.287. [DOI] [PubMed] [Google Scholar]
  92. Wilson A. P., Shankar S., Felmingham D., Treasure T., Grüneberg R. N. Serum and tissue levels of teicoplanin during cardiac surgery: the effect of a high dose regimen. J Antimicrob Chemother. 1989 Apr;23(4):613–617. doi: 10.1093/jac/23.4.613. [DOI] [PubMed] [Google Scholar]
  93. Wise R. Protein binding of beta-lactams: the effects on activity and pharmacology particularly tissue penetration. I. J Antimicrob Chemother. 1983 Jul;12(1):1–18. doi: 10.1093/jac/12.1.1. [DOI] [PubMed] [Google Scholar]
  94. Wise R. Protein binding of beta-lactams: the effects on activity and pharmacology particularly tissue penetration. II. Studies in man. J Antimicrob Chemother. 1983 Aug;12(2):105–118. doi: 10.1093/jac/12.2.105. [DOI] [PubMed] [Google Scholar]
  95. Wise R. The clinical relevance of protein binding and tissue concentrations in antimicrobial therapy. Clin Pharmacokinet. 1986 Nov-Dec;11(6):470–482. doi: 10.2165/00003088-198611060-00004. [DOI] [PubMed] [Google Scholar]
  96. Wise R. The relevance of pharmacokinetics to in-vitro models: protein binding--does it matter? J Antimicrob Chemother. 1985 Jan;15 (Suppl A):77–83. doi: 10.1093/jac/15.suppl_a.77. [DOI] [PubMed] [Google Scholar]
  97. Wood C. A., Kohlhepp S. J., Kohnen P. W., Houghton D. C., Gilbert D. N. Vancomycin enhancement of experimental tobramycin nephrotoxicity. Antimicrob Agents Chemother. 1986 Jul;30(1):20–24. doi: 10.1128/aac.30.1.20. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES