Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1991 Oct;35(10):2116–2120. doi: 10.1128/aac.35.10.2116

Selective anabolism of 6-methoxypurine arabinoside in varicella-zoster virus-infected cells.

K K Biron 1, P de Miranda 1, T C Burnette 1, T A Krenitsky 1
PMCID: PMC245336  PMID: 1722079

Abstract

6-Methoxypurine arabinoside (ara-M) is a highly selective inhibitor of varicella-zoster virus (VZV). It belongs to a class of purine arabinosides whose anti-VZV activity in vitro correlates with substrate utilization by the VZV-encoded thymidine kinase (TK) (D. R. Averett, G. W. Koszalka, J. A. Fyfe, G. B. Roberts, D. J. M. Purifoy, and T. A. Krenitsky, Antimicrob Agents Chemother. 35:851-857, 1991). In this study, the mechanism of action of ara-M was explored. VZV-infected human fibroblasts selectively accumulated ara-M and its phosphorylated metabolites, whereas in uninfected fibroblasts or in those infected with a TK-deficient strain of VZV, there was virtually no cellular uptake of ara-M. The major intracellular metabolite of ara-M in VZV-infected cells was identified as the triphosphate of adenine arabinoside (ara-ATP). Appreciable levels of ara-ADP, ara-AMP, and ara-MMP were also detected. However, di- or triphosphorylated forms of ara-M were not detected. Moreover, in VZV-infected cells, the concentrations of ara-ATP which accumulated in the presence of ara-M were up to eightfold higher than those generated with ara-A itself. In contrast, in uninfected cells, the levels of ara-ATP which accumulated in the presence of ara-M were barely detectable. Clearly, Ara-M activation was dependent on the activity of the virus-encoded TK, while ara-A anabolism resulted primarily from the activity of host cell enzymes. Therefore, ara-M selectively generates the DNA polymerase inhibitor ara-ATP in the VZV-infected cell.

Full text

PDF
2116

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Averett D. R., Koszalka G. W., Fyfe J. A., Roberts G. B., Purifoy D. J., Krenitsky T. A. 6-Methoxypurine arabinoside as a selective and potent inhibitor of varicella-zoster virus. Antimicrob Agents Chemother. 1991 May;35(5):851–857. doi: 10.1128/aac.35.5.851. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Balfour H. H., Jr Varicella zoster virus infections in immunocompromised hosts. A review of the natural history and management. Am J Med. 1988 Aug 29;85(2A):68–73. [PubMed] [Google Scholar]
  3. Biron K. K., Elion G. B. In vitro susceptibility of varicella-zoster virus to acyclovir. Antimicrob Agents Chemother. 1980 Sep;18(3):443–447. doi: 10.1128/aac.18.3.443. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Biron K. K., Fyfe J. A., Noblin J. E., Elion G. B. Selection and preliminary characterization of acyclovir-resistant mutants of varicella zoster virus. Am J Med. 1982 Jul 20;73(1A):383–386. doi: 10.1016/0002-9343(82)90128-0. [DOI] [PubMed] [Google Scholar]
  5. Burnette T. C., Koszalka G. W., Krenitsky T. A., De Miranda P. Metabolic disposition and pharmacokinetics of the antiviral agent 6-methoxypurine arabinoside in rats and monkeys. Antimicrob Agents Chemother. 1991 Jun;35(6):1165–1173. doi: 10.1128/aac.35.6.1165. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Crumpacker C. S., Schnipper L. E., Zaia J. A., Levin M. J. Growth inhibition by acycloguanosine of herpesviruses isolated from human infections. Antimicrob Agents Chemother. 1979 May;15(5):642–645. doi: 10.1128/aac.15.5.642. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Dorsky D. I., Crumpacker C. S. Drugs five years later: acyclovir. Ann Intern Med. 1987 Dec;107(6):859–874. doi: 10.7326/0003-4819-107-6-859. [DOI] [PubMed] [Google Scholar]
  8. Feldman S., Robertson P. K., Lott L., Thornton D. Neurotoxicity due to adenine arabinoside therapy during varicella-zoster virus infections in immunocompromised children. J Infect Dis. 1986 Nov;154(5):889–893. doi: 10.1093/infdis/154.5.889. [DOI] [PubMed] [Google Scholar]
  9. Gephart J. F., Lerner A. M. Comparison of the effects of arabinosyladenine, arabinosylhypoxanthine, and arabinosyladenine 5'-monophosphate against herpes simplex virus, varicella-zoster virus, and cytomegalovirus with their effects on cellular deoxyribonucleic acid synthesis. Antimicrob Agents Chemother. 1981 Jan;19(1):170–178. doi: 10.1128/aac.19.1.170. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. HOARD D. E., OTT D. G. CONVERSION OF MONO- AND OLIGODEOXYRIBONUCLEOTIDES TO 5-TRIPHOSPHATES. J Am Chem Soc. 1965 Apr 20;87:1785–1788. doi: 10.1021/ja01086a031. [DOI] [PubMed] [Google Scholar]
  11. Huff J. C., Bean B., Balfour H. H., Jr, Laskin O. L., Connor J. D., Corey L., Bryson Y. J., McGuirt P. Therapy of herpes zoster with oral acyclovir. Am J Med. 1988 Aug 29;85(2A):84–89. [PubMed] [Google Scholar]
  12. Mertz G. J., Eron L., Kaufman R., Goldberg L., Raab B., Conant M., Mills J., Kurtz T., Davis L. G. Prolonged continuous versus intermittent oral acyclovir treatment in normal adults with frequently recurring genital herpes simplex virus infection. Am J Med. 1988 Aug 29;85(2A):14–19. [PubMed] [Google Scholar]
  13. Müller W. E., Zahn R. K., Bittlingmaier K., Falke D. Inhibition of herpesvirus DNA synthesis by 9-beta-D-arabinofuranosyladenine in cellular and cell-free systems. Ann N Y Acad Sci. 1977 Mar 4;284:34–48. doi: 10.1111/j.1749-6632.1977.tb21935.x. [DOI] [PubMed] [Google Scholar]
  14. Ostrander M., Cheng Y. C. Properties of herpes simplex virus type 1 and type 2 DNA polymerase. Biochim Biophys Acta. 1980 Sep 19;609(2):232–245. doi: 10.1016/0005-2787(80)90234-8. [DOI] [PubMed] [Google Scholar]
  15. Peterslund N. A. Management of varicella zoster infections in immunocompetent hosts. Am J Med. 1988 Aug 29;85(2A):74–78. [PubMed] [Google Scholar]
  16. Reid R., Mar E. C., Huang E. S., Topal M. D. Insertion and extension of acyclic, dideoxy, and ara nucleotides by herpesviridae, human alpha and human beta polymerases. A unique inhibition mechanism for 9-(1,3-dihydroxy-2-propoxymethyl)guanine triphosphate. J Biol Chem. 1988 Mar 15;263(8):3898–3904. [PubMed] [Google Scholar]
  17. Sawyer M. H., Inchauspe G., Biron K. K., Waters D. J., Straus S. E., Ostrove J. M. Molecular analysis of the pyrimidine deoxyribonucleoside kinase gene of wild-type and acyclovir-resistant strains of varicella-zoster virus. J Gen Virol. 1988 Oct;69(Pt 10):2585–2593. doi: 10.1099/0022-1317-69-10-2585. [DOI] [PubMed] [Google Scholar]
  18. Schwartz P. M., Novack J., Shipman C., Jr, Drach J. C. Metabolism of arabinosyladenine in herpes simplex virus-infected and uninfected cells. Correlation with inhibition of DNA synthesis and role in antiviral selectivity. Biochem Pharmacol. 1984 Aug 1;33(15):2431–2438. doi: 10.1016/0006-2952(84)90715-9. [DOI] [PubMed] [Google Scholar]
  19. Schwartz P. M., Shipman C., Jr, Drach J. C. Antiviral activity of arabinosyladenine and arabinosylhypoxanthine in herpes simplex virus-infected KB cells: selective inhibition of viral deoxyribonucleic acid synthesis in the presence of an adenosine deaminase inhibitor. Antimicrob Agents Chemother. 1976 Jul;10(1):64–74. doi: 10.1128/aac.10.1.64. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Shepp D. H., Dandliker P. S., Meyers J. D. Current therapy of varicella zoster virus infection in immunocompromised patients. A comparison of acyclovir and vidarabine. Am J Med. 1988 Aug 29;85(2A):96–98. [PubMed] [Google Scholar]
  21. Shipman C., Jr, Smith S. H., Carlson R. H., Drach J. C. Antiviral activity of arabinosyladenine and arabinosylhypoxanthine in herpes simplex virus-infected KB cells: selective inhibition of viral deoxyribonucleic acid synthesis in synchronized suspension cultures. Antimicrob Agents Chemother. 1976 Jan;9(1):120–127. doi: 10.1128/aac.9.1.120. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Wees S. J., Madhavan T. Herpes zoster encephalitis: successful therapy with vidarabine. Henry Ford Hosp Med J. 1980;28(1):67–70. [PubMed] [Google Scholar]
  23. Whitley R. J., Soong S. J., Dolin R., Betts R., Linnemann C., Jr, Alford C. A., Jr Early vidarabine therapy to control the complications of herpes zoster in immunosuppressed patients. N Engl J Med. 1982 Oct 14;307(16):971–975. doi: 10.1056/NEJM198210143071602. [DOI] [PubMed] [Google Scholar]
  24. Whitley R. J., Soong S. J., Dolin R., Galasso G. J., Ch'ien L. T., Alford C. A. Adenine arabinoside therapy of biopsy-proved herpes simplex encephalitis. National Institute of Allergy and Infectious Diseases collaborative antiviral study. N Engl J Med. 1977 Aug 11;297(6):289–294. doi: 10.1056/NEJM197708112970601. [DOI] [PubMed] [Google Scholar]
  25. Whitley R., Arvin A., Prober C., Burchett S., Corey L., Powell D., Plotkin S., Starr S., Alford C., Connor J. A controlled trial comparing vidarabine with acyclovir in neonatal herpes simplex virus infection. Infectious Diseases Collaborative Antiviral Study Group. N Engl J Med. 1991 Feb 14;324(7):444–449. doi: 10.1056/NEJM199102143240703. [DOI] [PubMed] [Google Scholar]
  26. Whitley R., Hilty M., Haynes R., Bryson Y., Connor J. D., Soong S. J., Alford C. A. Vidarabine therapy of varicella in immunosuppressed patients. J Pediatr. 1982 Jul;101(1):125–131. doi: 10.1016/s0022-3476(82)80201-1. [DOI] [PubMed] [Google Scholar]
  27. de Miranda P., Burnette T. C., Biron K. K., Miller R. L., Averett D. R., Krenitsky T. A. Anabolic pathway of 6-methoxypurine arabinoside in cells infected with varicella-zoster virus. Antimicrob Agents Chemother. 1991 Oct;35(10):2121–2124. doi: 10.1128/aac.35.10.2121. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES