Abstract
The effect of variations in plasma protein binding on the renal excretion of cefonicid was assessed by using isolated perfused rat kidneys. Cefonicid exhibits preferential binding ex vivo to human serum albumin (HSA), as opposed to bovine serum albumin (BSA), and is eliminated mainly by tubular secretion, a process that was reported to be dependent on the total drug concentration. This contradicts previous studies with antimicrobial compounds and other drugs of low renal extraction in which the unbound drug concentration was shown to be the driving force for carrier-mediated tubular transport. To clarify this discrepancy, we performed perfusion studies by using 6% BSA at initial concentrations of 200 micrograms/ml (n = 6) and 20 micrograms/ml (n = 9) and in a combination of 4% BSA plus 2% HSA at initial concentrations of 200 micrograms/ml (n = 4). The excretion ratio [ER = CLR/(fu x GFR)] of cefonicid decreased with increasing unbound concentrations, whereas no apparent relationship with the total concentration was evident. At similar total concentrations of cefonicid, the renal clearance remained unchanged; the secretion clearance increased significantly in the 4% BSA-2% HSA experiments, reflecting the reduced unbound fraction and unbound drug concentration of cefonicid. The excretion ratio data were compatible with a model in which Michaelis-Menten kinetics were required to describe active transport and secretion was dependent on the unbound cefonicid concentration. As a result, changes in plasma protein binding as a result of drug interactions or disease states could significantly influence the tubular transport capability of compounds with low renal extraction.
Full text
PDF





Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Arvidsson A., Borgå O., Alván G. Renal excretion of cephapirin and cephaloridine: evidence for saturable tubular reabsorption. Clin Pharmacol Ther. 1979 Jun;25(6):870–876. doi: 10.1002/cpt1979256870. [DOI] [PubMed] [Google Scholar]
- Bekersky I., Colburn W. A. Renal clearance of carprofen in the isolated perfused rat kidney. Drug Metab Dispos. 1981 Jan-Feb;9(1):25–29. [PubMed] [Google Scholar]
- Bekersky I. Use of the isolated perfused kidney as a tool in drug disposition studies. Drug Metab Rev. 1983;14(5):931–960. doi: 10.3109/03602538308991417. [DOI] [PubMed] [Google Scholar]
- Besseghir K., Mosig D., Roch-Ramel F. Facilitation by serum albumin of renal tubular secretion of organic anions. Am J Physiol. 1989 Mar;256(3 Pt 2):F475–F484. doi: 10.1152/ajprenal.1989.256.3.F475. [DOI] [PubMed] [Google Scholar]
- Bins J. W., Mattie H. Saturation of the tubular excretion of beta-lactam antibiotics. Br J Clin Pharmacol. 1988 Jan;25(1):41–50. doi: 10.1111/j.1365-2125.1988.tb03280.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bourdeau J. E., Carone F. A. Contraluminal serum albumin uptake in isolated perfused renal tubules. Am J Physiol. 1973 Feb;224(2):399–404. doi: 10.1152/ajplegacy.1973.224.2.399. [DOI] [PubMed] [Google Scholar]
- Bowman R. H. Renal secretion of [35-S]furosemide and depression by albumin binding. Am J Physiol. 1975 Jul;229(1):93–98. doi: 10.1152/ajplegacy.1975.229.1.93. [DOI] [PubMed] [Google Scholar]
- Bowman R. H. The perfused rat kidney. Methods Enzymol. 1975;39:3–11. doi: 10.1016/s0076-6879(75)39003-4. [DOI] [PubMed] [Google Scholar]
- Dudley M. N., Quintiliani R., Nightingale C. H. Review of cefonicid, a long-acting cephalosporin. Clin Pharm. 1984 Jan-Feb;3(1):23–32. [PubMed] [Google Scholar]
- Dudley M. N., Shyu W. C., Nightingale C. H., Quintiliani R. Effect of saturable serum protein binding on the pharmacokinetics of unbound cefonicid in humans. Antimicrob Agents Chemother. 1986 Oct;30(4):565–569. doi: 10.1128/aac.30.4.565. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Epstein F. H., Brosnan J. T., Tange J. D., Ross B. D. Improved function with amino acids in the isolated perfused kidney. Am J Physiol. 1982 Sep;243(3):F284–F292. doi: 10.1152/ajprenal.1982.243.3.F284. [DOI] [PubMed] [Google Scholar]
- Giltinan D. M., Ruppert D. Fitting heteroscedastic regression models to individual pharmacokinetic data using standard statistical software. J Pharmacokinet Biopharm. 1989 Oct;17(5):601–614. doi: 10.1007/BF01071352. [DOI] [PubMed] [Google Scholar]
- Hall S., Rowland M. Influence of fraction unbound upon the renal clearance of furosemide in the isolated perfused rat kidney. J Pharmacol Exp Ther. 1985 Jan;232(1):263–268. [PubMed] [Google Scholar]
- Hori R., Sunayashiki K., Kamiya A. Pharmacokinetic analysis of renal handling of sulfamethizole. J Pharm Sci. 1976 Mar;65(3):463–465. doi: 10.1002/jps.2600650345. [DOI] [PubMed] [Google Scholar]
- Hori R., Sunayashiki K., Kamiya A. Tissue distribution and metabolism of drugs. I. Quantitative investigation on renal handling of phenolsulfonphthalein and sulfonamides in rabbits. Chem Pharm Bull (Tokyo) 1978 Mar;26(3):740–745. doi: 10.1248/cpb.26.740. [DOI] [PubMed] [Google Scholar]
- Inui K., Okano T., Takano M., Saito H., Hori R. Carrier-mediated transport of cephalexin via the dipeptide transport system in rat renal brush-border membrane vesicles. Biochim Biophys Acta. 1984 Jan 25;769(2):449–454. doi: 10.1016/0005-2736(84)90329-8. [DOI] [PubMed] [Google Scholar]
- Inui K., Takano M., Okano T., Hori R. H+ gradient-dependent transport of aminocephalosporins in rat renal brush border membrane vesicles: role of H+/organic cation antiport system. J Pharmacol Exp Ther. 1985 Apr;233(1):181–185. [PubMed] [Google Scholar]
- Kamiya A., Okumura K., Hori R. Quantitative investigation on renal handling of drugs in rabbits, dogs, and humans. J Pharm Sci. 1983 Apr;72(4):440–443. doi: 10.1002/jps.2600720429. [DOI] [PubMed] [Google Scholar]
- Koschier F. J., Acara M. Transport of 2,4,5-trichlorophenoxyacetate in the isolated, perfused rat kidney. J Pharmacol Exp Ther. 1979 Feb;208(2):287–293. [PubMed] [Google Scholar]
- Lee L. J., Cook J. A., Smith D. E. Renal transport kinetics of chlorothiazide in the isolated perfused rat kidney. J Pharmacol Exp Ther. 1988 Oct;247(1):203–208. [PubMed] [Google Scholar]
- Lee L. J., Cook J. A., Smith D. E. Renal transport kinetics of furosemide in the isolated perfused rat kidney. J Pharmacokinet Biopharm. 1986 Apr;14(2):157–174. doi: 10.1007/BF01065259. [DOI] [PubMed] [Google Scholar]
- Maack T. Physiological evaluation of the isolated perfused rat kidney. Am J Physiol. 1980 Feb;238(2):F71–F78. doi: 10.1152/ajprenal.1980.238.2.F71. [DOI] [PubMed] [Google Scholar]
- Maack T. Renal clearance and isolated kidney perfusion techniques. Kidney Int. 1986 Aug;30(2):142–151. doi: 10.1038/ki.1986.166. [DOI] [PubMed] [Google Scholar]
- Nishiitsutsuji-Uwo J. M., Ross B. D., Krebs H. A. Metabolic activities of the isolated perfused rat kidney. Biochem J. 1967 Jun;103(3):852–862. doi: 10.1042/bj1030852. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Oie S., Fiori F. Effects of albumin and alpha-1 acid glycoprotein on elimination of prazosin and antipyrine in the isolated perfused rat liver. J Pharmacol Exp Ther. 1985 Sep;234(3):636–640. [PubMed] [Google Scholar]
- Saltiel E., Brogden R. N. Cefonicid. A review of its antibacterial activity, pharmacological properties and therapeutic use. Drugs. 1986 Sep;32(3):222–259. doi: 10.2165/00003495-198632030-00002. [DOI] [PubMed] [Google Scholar]
- Tamai I., Tsuji A., Kin Y. Carrier-mediated transport of cefixime, a new cephalosporin antibiotic, via an organic anion transport system in the rat renal brush-border membrane. J Pharmacol Exp Ther. 1988 Jul;246(1):338–344. [PubMed] [Google Scholar]
- Tsuji A., Terasaki T., Tamai I., Takeda K. In vivo evidence for carrier-mediated uptake of beta-lactam antibiotics through organic anion transport systems in rat kidney and liver. J Pharmacol Exp Ther. 1990 Apr;253(1):315–320. [PubMed] [Google Scholar]
- Wong W. W., Maderich A. B., Polli G. P., Ravin L. J. Stability of cefonicid sodium in infusion fluids. Am J Hosp Pharm. 1985 Sep;42(9):1980–1983. [PubMed] [Google Scholar]
- Yacobi A., Levy G. Effect of serum protein binding on sulfisoxazole distribution, metabolism, and excretion in rats. J Pharm Sci. 1979 Jun;68(6):742–746. doi: 10.1002/jps.2600680624. [DOI] [PubMed] [Google Scholar]
- van Ginneken C. A., Russel F. G. Saturable pharmacokinetics in the renal excretion of drugs. Clin Pharmacokinet. 1989 Jan;16(1):38–54. doi: 10.2165/00003088-198916010-00003. [DOI] [PubMed] [Google Scholar]
