Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1991 Dec;35(12):2630–2633. doi: 10.1128/aac.35.12.2630

Hygromycin B inhibits synthesis of murine coronavirus RNA.

G Macintyre 1, D E Woods 1, R Anderson 1
PMCID: PMC245443  PMID: 1667257

Abstract

The aminoglycoside hygromycin B inhibits the infection of mouse hepatitis virus (MHV) A59 both in vitro and in vivo. In probing the mechanism by which hygromycin B exerts its antiviral effect, we describe here studies which point to inhibition of viral RNA synthesis as the key step in virus replication which is affected by the drug. Cells which are infected with MHV do not take up higher levels of hygromycin B than do uninfected ones. Comparative assays of MHV replication and MHV protein synthesis in the presence of hygromycin B and another aminoglycoside, neomycin, indicate that hygromycin B is the more-effective antiviral agent and that its antiviral activity likely does not involve phosphoinositide-mediated processes such as those inhibited by neomycin.

Full text

PDF
2630

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Benedetto A., Rossi G. B., Amici C., Belardelli F., Cioè L., Carruba G., Carrasco L. Inhibition of animal virus production by means of translation inhibitors unable to penetrate normal cells. Virology. 1980 Oct 15;106(1):123–132. doi: 10.1016/0042-6822(80)90227-5. [DOI] [PubMed] [Google Scholar]
  2. Cameron J. M., Clemens M. J., Gray M. A., Menzies D. E., Mills B. J., Warren A. P., Pasternak C. A. Increased sensitivity of virus-infected cells to inhibitors of protein synthesis does not correlate with changes in plasma membrane permeability. Virology. 1986 Dec;155(2):534–544. doi: 10.1016/0042-6822(86)90214-x. [DOI] [PubMed] [Google Scholar]
  3. Carney D. H., Scott D. L., Gordon E. A., LaBelle E. F. Phosphoinositides in mitogenesis: neomycin inhibits thrombin-stimulated phosphoinositide turnover and initiation of cell proliferation. Cell. 1985 Sep;42(2):479–488. doi: 10.1016/0092-8674(85)90105-9. [DOI] [PubMed] [Google Scholar]
  4. Cheley S., Anderson R. A reproducible microanalytical method for the detection of specific RNA sequences by dot-blot hybridization. Anal Biochem. 1984 Feb;137(1):15–19. doi: 10.1016/0003-2697(84)90339-7. [DOI] [PubMed] [Google Scholar]
  5. Gray M. A., Austin S. A., Clemens M. J., Rodrigues L., Pasternak C. A. Protein synthesis in Semliki Forest virus-infected cells is not controlled by permeability changes. J Gen Virol. 1983 Dec;64(Pt 12):2631–2640. doi: 10.1099/0022-1317-64-12-2631. [DOI] [PubMed] [Google Scholar]
  6. Gray M. A., Micklem K. J., Brown F., Pasternak C. A. Effect of vesicular stomatitis virus and Semliki Forest Virus on uptake of nutrients and intracellular cation concentration. J Gen Virol. 1983 Jul;64(Pt 7):1449–1456. doi: 10.1099/0022-1317-64-7-1449. [DOI] [PubMed] [Google Scholar]
  7. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  8. Langeland N., Haarr L., Holmsen H. Polyphosphoinositide metabolism in baby-hamster kidney cells infected with herpes simplex virus type 1. Biochem J. 1986 Aug 1;237(3):707–712. doi: 10.1042/bj2370707. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Lucas A., Flintoff W., Anderson R., Percy D., Coulter M., Dales S. In vivo and in vitro models of demyelinating diseases: tropism of the JHM strain of murine hepatitis virus for cells of glial origin. Cell. 1977 Oct;12(2):553–560. doi: 10.1016/0092-8674(77)90131-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. MANAKER R. A., PICZAK C. V., MILLER A. A., STANTON M. F. A hepatitis virus complicating studies with mouse leukemia. J Natl Cancer Inst. 1961 Jul;27:29–51. [PubMed] [Google Scholar]
  11. Macintyre G., Curry B., Wong F., Anderson R. Hygromycin B therapy of a murine coronaviral hepatitis. Antimicrob Agents Chemother. 1991 Oct;35(10):2125–2127. doi: 10.1128/aac.35.10.2125. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Macintyre G., Wong F., Anderson R. A model for persistent murine coronavirus infection involving maintenance via cytopathically infected cell centres. J Gen Virol. 1989 Mar;70(Pt 3):763–768. doi: 10.1099/0022-1317-70-3-763. [DOI] [PubMed] [Google Scholar]
  13. Mizzen L., Macintyre G., Wong F., Anderson R. Translational regulation in mouse hepatitis virus infection is not mediated by altered intracellular ion concentrations. J Gen Virol. 1987 Aug;68(Pt 8):2143–2151. doi: 10.1099/0022-1317-68-8-2143. [DOI] [PubMed] [Google Scholar]
  14. Muñoz A., Castrillo J. L., Carrasco L. Modification of membrane permeability during Semliki Forest virus infection. Virology. 1985 Oct 30;146(2):203–212. doi: 10.1016/0042-6822(85)90004-2. [DOI] [PubMed] [Google Scholar]
  15. Otero M. J., Carrasco L. Proteins are cointernalized with virion particles during early infection. Virology. 1987 Sep;160(1):75–80. doi: 10.1016/0042-6822(87)90046-8. [DOI] [PubMed] [Google Scholar]
  16. Polgár K., Sipka S., Abel G., Papp Z. Neutral-red uptake by amniotic-fluid macrophages in neural-tube defects: a rapid test. N Engl J Med. 1984 May 31;310(22):1463–1464. doi: 10.1056/nejm198405313102217. [DOI] [PubMed] [Google Scholar]
  17. Schacht J. Inhibition by neomycin of polyphosphoinositide turnover in subcellular fractions of guinea-pig cerebral cortex in vitro. J Neurochem. 1976 Nov;27(5):1119–1124. doi: 10.1111/j.1471-4159.1976.tb00318.x. [DOI] [PubMed] [Google Scholar]
  18. Simon H. J., Yin E. J. Microbioassay of antimicrobial agents. Appl Microbiol. 1970 Apr;19(4):573–579. doi: 10.1128/am.19.4.573-579.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES