Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1992 Dec;36(12):2693–2697. doi: 10.1128/aac.36.12.2693

Relationship between antibiotic concentration in bone and efficacy of treatment of staphylococcal osteomyelitis in rats: azithromycin compared with clindamycin and rifampin.

T O'Reilly 1, S Kunz 1, E Sande 1, O Zak 1, M A Sande 1, M G Täuber 1
PMCID: PMC245530  PMID: 1336342

Abstract

We examined the effect of azithromycin (CP-62,993), a new oral macrolide-like antibiotic, alone and in combination with rifampin, as treatment for experimental staphylococcal osteomyelitis. Clindamycin was used as a comparison drug. Rats (n = 10 to 15 per group) were infected by direct instillation of Staphylococcus aureus into the tibial medullary cavity. After 10 days, 21-day treatments with azithromycin (50 mg/kg of body weight, once daily, by the oral route), rifampin (20 mg/kg, once daily, subcutaneously), or clindamycin (90 mg/kg, three times daily, by the oral route) were started. The drugs were used singly or in combination (azithromycin plus rifampin or clindamycin plus rifampin). Peak azithromycin concentrations in bone were > 30 times higher than levels in serum, but the drug had little effect on final bacterial titers (5.13 +/- 0.46 log10 CFU/g of bone; for controls, 6.54 +/- 0.28 log10 CFU/g). Clindamycin was more active than azithromycin (3.26 +/- 2.14 log10 CFU/g of bone; 20% of sterilized bones), but rifampin was the most active single drug (1.5 +/- 1.92 log10 CFU/g; 53% of sterilized bones). Therapy with rifampin or clindamycin alone was associated with the emergence of resistance. Rifampin plus azithromycin (0.51 +/- 1.08 log10 CFU/g of bone; 80% of sterilized bones) and rifampin plus clindamycin (0.87 +/- 1.34 log10 CFU/g of bone; 66% of sterilized bones) were the most active regimens. Thus, azithromycin is ineffective as a single drug for the treatment of experimental staphylococcal osteomyelitis, despite high levels in bone that markedly exceeded the MIC, but it may be an attractive partner drug for rifampin.

Full text

PDF
2693

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brook I. The clinical importance of all members of the Bacteroides fragilis group. J Antimicrob Chemother. 1990 Mar;25(3):473–474. doi: 10.1093/jac/25.3.473. [DOI] [PubMed] [Google Scholar]
  2. Daum T. E., Schaberg D. R., Terpenning M. S., Sottile W. S., Kauffman C. A. Increasing resistance of Staphylococcus aureus to ciprofloxacin. Antimicrob Agents Chemother. 1990 Sep;34(9):1862–1863. doi: 10.1128/aac.34.9.1862. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Dworkin R. J., Lee B. L., Sande M. A., Chambers H. F. Treatment of right-sided Staphylococcus aureus endocarditis in intravenous drug users with ciprofloxacin and rifampicin. Lancet. 1989 Nov 4;2(8671):1071–1073. doi: 10.1016/s0140-6736(89)91083-0. [DOI] [PubMed] [Google Scholar]
  4. Dworkin R., Modin G., Kunz S., Rich R., Zak O., Sande M. Comparative efficacies of ciprofloxacin, pefloxacin, and vancomycin in combination with rifampin in a rat model of methicillin-resistant Staphylococcus aureus chronic osteomyelitis. Antimicrob Agents Chemother. 1990 Jun;34(6):1014–1016. doi: 10.1128/aac.34.6.1014. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Girard A. E., Girard D., English A. R., Gootz T. D., Cimochowski C. R., Faiella J. A., Haskell S. L., Retsema J. A. Pharmacokinetic and in vivo studies with azithromycin (CP-62,993), a new macrolide with an extended half-life and excellent tissue distribution. Antimicrob Agents Chemother. 1987 Dec;31(12):1948–1954. doi: 10.1128/aac.31.12.1948. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Girard A. E., Girard D., Retsema J. A. Correlation of the extravascular pharmacokinetics of azithromycin with in-vivo efficacy in models of localized infection. J Antimicrob Chemother. 1990 Jan;25 (Suppl A):61–71. doi: 10.1093/jac/25.suppl_a.61. [DOI] [PubMed] [Google Scholar]
  7. Lode H. The pharmacokinetics of azithromycin and their clinical significance. Eur J Clin Microbiol Infect Dis. 1991 Oct;10(10):807–812. doi: 10.1007/BF01975832. [DOI] [PubMed] [Google Scholar]
  8. McDonald P. J., Pruul H. Phagocyte uptake and transport of azithromycin. Eur J Clin Microbiol Infect Dis. 1991 Oct;10(10):828–833. doi: 10.1007/BF01975835. [DOI] [PubMed] [Google Scholar]
  9. Neu H. C. Clinical microbiology of azithromycin. Am J Med. 1991 Sep 12;91(3A):12S–18S. doi: 10.1016/0002-9343(91)90395-e. [DOI] [PubMed] [Google Scholar]
  10. Norden C. W. Lessons learned from animal models of osteomyelitis. Rev Infect Dis. 1988 Jan-Feb;10(1):103–110. doi: 10.1093/clinids/10.1.103. [DOI] [PubMed] [Google Scholar]
  11. Norden C. W., Shaffer M. Treatment of experimental chronic osteomyelitis due to staphylococcus aureus with vancomycin and rifampin. J Infect Dis. 1983 Feb;147(2):352–357. doi: 10.1093/infdis/147.2.352. [DOI] [PubMed] [Google Scholar]
  12. Pechère J. C. The activity of azithromycin in animal models of infection. Eur J Clin Microbiol Infect Dis. 1991 Oct;10(10):821–827. doi: 10.1007/BF01975834. [DOI] [PubMed] [Google Scholar]
  13. Retsema J. A., Girard A. E., Brennan L. A., Cimochowski C. R., Faiella J. A. Lack of emergence of significant resistance in vitro and in vivo to the new azalide antibiotic azithromycin. Eur J Clin Microbiol Infect Dis. 1991 Oct;10(10):843–846. doi: 10.1007/BF01975837. [DOI] [PubMed] [Google Scholar]
  14. Retsema J. A., Girard A. E., Girard D., Milisen W. B. Relationship of high tissue concentrations of azithromycin to bactericidal activity and efficacy in vivo. J Antimicrob Chemother. 1990 Jan;25 (Suppl A):83–89. doi: 10.1093/jac/25.suppl_a.83. [DOI] [PubMed] [Google Scholar]
  15. Rissing J. P., Buxton T. B., Weinstein R. S., Shockley R. K. Model of experimental chronic osteomyelitis in rats. Infect Immun. 1985 Mar;47(3):581–586. doi: 10.1128/iai.47.3.581-586.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Shepard R. M., Falkner F. C. Pharmacokinetics of azithromycin in rats and dogs. J Antimicrob Chemother. 1990 Jan;25 (Suppl A):49–60. doi: 10.1093/jac/25.suppl_a.49. [DOI] [PubMed] [Google Scholar]
  17. Williams J. D. Spectrum of activity of azithromycin. Eur J Clin Microbiol Infect Dis. 1991 Oct;10(10):813–820. doi: 10.1007/BF01975833. [DOI] [PubMed] [Google Scholar]
  18. Wispelwey B., Scheld W. M. Ciprofloxacin in the treatment of Staphylococcus aureus osteomyelitis. A review. Diagn Microbiol Infect Dis. 1990 Mar-Apr;13(2):169–171. doi: 10.1016/0732-8893(90)90103-3. [DOI] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES