Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1974 Jul;119(1):70–75. doi: 10.1128/jb.119.1.70-75.1974

Adenine Nucleotide Changes Associated with the Initiation of Sporulation in Bacillus subtilis

Keith W Hutchison 1, R S Hanson 1
PMCID: PMC245574  PMID: 4209776

Abstract

At the end of the exponential growth phase of Bacillus subtilis, there is a decrease in the energy level of the cell, whether expressed as adenosine triphosphate concentration or adenylate energy charge. Phosphate limitation of exponentially growing cells produces a similar decrease in the energy level of the cell, and sporulation is derepressed in the presence of 10 mM glucose. A reduction in the tryptophan concentration of the medium during phosphate limitation of the tryptophan auxotroph B. subtilis 168 prevented the decrease in energy charge. Cells do not sporulate under these conditions. Energy charge values of 0.30 to 0.35 found during sporulation do not lead to cell death.

Full text

PDF
70

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Atkinson D. E. Regulation of enzyme function. Annu Rev Microbiol. 1969;23:47–68. doi: 10.1146/annurev.mi.23.100169.000403. [DOI] [PubMed] [Google Scholar]
  2. CANFIELD R. E., SZULMAJSTER J. TIME OF SYNTHESIS OF DEOXYRIBONUCLEIC ACID AND PROTEIN IN SPORES OF B. SUBTILIS. Nature. 1964 Aug 8;203:596–598. doi: 10.1038/203596a0. [DOI] [PubMed] [Google Scholar]
  3. Carls R. A., Hanson R. S. Isolation and characterization of tricarboxylic acid cycle mutants of Bacillus subtilis. J Bacteriol. 1971 Jun;106(3):848–855. doi: 10.1128/jb.106.3.848-855.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chapman A. G., Fall L., Atkinson D. E. Adenylate energy charge in Escherichia coli during growth and starvation. J Bacteriol. 1971 Dec;108(3):1072–1086. doi: 10.1128/jb.108.3.1072-1086.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Ciardi J. E., Anderson E. P. Separation of purine and pyrimidine derivatives by thin-layer chromatography. Anal Biochem. 1968 Mar;22(3):398–408. doi: 10.1016/0003-2697(68)90282-0. [DOI] [PubMed] [Google Scholar]
  6. Cox D. P., Hanson R. S. Catabolite repression of aconitate hydratase in Bacillus subtilis. Biochim Biophys Acta. 1968 Apr 16;158(1):36–44. doi: 10.1016/0304-4165(68)90069-x. [DOI] [PubMed] [Google Scholar]
  7. Flechtner V. R., Hanson R. S. Coarse and fine control of citrate synthase from Bacillus subtilis. Biochim Biophys Acta. 1969 Jul 30;184(2):252–262. doi: 10.1016/0304-4165(69)90027-0. [DOI] [PubMed] [Google Scholar]
  8. Fortnagel P., Freese E. Analysis of sporulation mutants. II. Mutants blocked in the citric acid cycle. J Bacteriol. 1968 Apr;95(4):1431–1438. doi: 10.1128/jb.95.4.1431-1438.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. HANSON R. S., SRINIVASAN V. R., HALVORSON H. O. BIOCHEMISTRY OF SPORULATION. II. ENZYMATIC CHANGES DURING SPORULATION OF BACILLUS CEREUS. J Bacteriol. 1963 Jul;86:45–50. doi: 10.1128/jb.86.1.45-50.1963. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hanson R. S., Cox D. P. Effect of different nutritional conditions on the synthesis of tricarboxylic acid cycle enzymes. J Bacteriol. 1967 Jun;93(6):1777–1787. doi: 10.1128/jb.93.6.1777-1787.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Holmes P. K., Levinson H. S. Metabolic requirements for microcycle sporogenesis of Bacillus megaterium. J Bacteriol. 1967 Aug;94(2):434–440. doi: 10.1128/jb.94.2.434-440.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. MAGASANIK B. Catabolite repression. Cold Spring Harb Symp Quant Biol. 1961;26:249–256. doi: 10.1101/sqb.1961.026.01.031. [DOI] [PubMed] [Google Scholar]
  13. MacKechnie I., Hanson R. S. Microcycle sporogenesis of Bacillus cereus in a chemically defined medium. J Bacteriol. 1968 Feb;95(2):355–359. doi: 10.1128/jb.95.2.355-359.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Pastan I., Perlman R. Cyclic adenosine monophosphate in bacteria. Science. 1970 Jul 24;169(3943):339–344. doi: 10.1126/science.169.3943.339. [DOI] [PubMed] [Google Scholar]
  15. Sarkar N., Paulus H. Nucleotide-dependent inactivation of RNA polymerase from Bacillus brevis. Proc Natl Acad Sci U S A. 1972 Dec;69(12):3570–3574. doi: 10.1073/pnas.69.12.3570. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Schaeffer P., Millet J., Aubert J. P. Catabolic repression of bacterial sporulation. Proc Natl Acad Sci U S A. 1965 Sep;54(3):704–711. doi: 10.1073/pnas.54.3.704. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Setlow P. Inability of detect cyclic AMP in vegetative or sporulating cells or dormant spores of Bacillus megaterium. Biochem Biophys Res Commun. 1973 May 15;52(2):365–372. doi: 10.1016/0006-291x(73)90720-1. [DOI] [PubMed] [Google Scholar]
  18. Villar-Palasi C., Wei S. H. Conversion of glycogen phosphorylase b to a by non-activated phosphorylase b kinase: an in vitro model of the mechanism of increase in phosphorylase a activity with muscle contraction. Proc Natl Acad Sci U S A. 1970 Sep;67(1):345–350. doi: 10.1073/pnas.67.1.345. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Yousten A. A., Hanson R. S. Sporulation of tricarboxylic acid cycle mutants of Bacillus subtilis. J Bacteriol. 1972 Feb;109(2):886–894. doi: 10.1128/jb.109.2.886-894.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES