Abstract
The kinetics of radioactive phosphate incorporation into the adenosine and guanosine nucleoside triphosphate termini of bacterial ribonucleic acid (RNA) was studied. Knowledge obtained in a previous investigation of the kinetics of phosphate incorporation into their precursors, adenosine 5′-triphosphate and guanosine 5′-triphosphate, allowed calculation of the average half-lives of these termini, which were found to be approximately 170 s at 21.5 C for both. The ratio between the number of nucleotides incorporated into the interior of RNA chains per second and the number of termini synthesized per second was calculated by several methods and found to be between 4,000 and 8,000. Assuming that the initiation of synthesis of a RNA chain by deoxyribonucleic acid-dependent RNA polymerase always produces a triphosphate termini and that some termini do not have half-lives so short as to not be seen in this study (less than 10 s), this is the apparent average length of the transcriptional unit. The implication of these findings to the genetic organization of transfer RNA genes is discussed.
Full text
PDF













Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Altman S., Smith J. D. Tyrosine tRNA precursor molecule polynucleotide sequence. Nat New Biol. 1971 Sep 8;233(36):35–39. doi: 10.1038/newbio233035a0. [DOI] [PubMed] [Google Scholar]
- Bremer H., Berry L., Dennis P. P. Regulation of ribonucleic acid synthesis in Escherichia coli B-r: an analysis of a shift-up. II. Fraction of RNA polymerase engaged in the synthesis of stable RNA at different steady-state growth rates. J Mol Biol. 1973 Mar 25;75(1):161–179. doi: 10.1016/0022-2836(73)90536-6. [DOI] [PubMed] [Google Scholar]
- Bremer H., Konrad M. W., Gaines K., Stent G. S. Direction of chain growth in enzymic RNA synthesis. J Mol Biol. 1965 Sep;13(2):540–553. doi: 10.1016/s0022-2836(65)80116-4. [DOI] [PubMed] [Google Scholar]
- Chaney S. G., Boyer P. D. Incorporation of water oxygens into intracellular nucleotides and RNA. II. Predominantly hydrolytic RNA turnover in Escherichia coli. J Mol Biol. 1972 Mar 14;64(3):581–591. doi: 10.1016/0022-2836(72)90084-8. [DOI] [PubMed] [Google Scholar]
- Dahlberg J. E. Terminal sequences of bacteriophage RNAs. Nature. 1968 Nov 9;220(5167):548–552. doi: 10.1038/220548a0. [DOI] [PubMed] [Google Scholar]
- Dennis P. P. Stable ribonucleic acid synthesis during the cell division cycle in slowly growing Escherichia coli B-r. J Biol Chem. 1972 Jan 10;247(1):204–208. [PubMed] [Google Scholar]
- Doolittle W. F., Pace N. R. Transcriptional organization of the ribosomal RNA cistrons in Escherichia coli. Proc Natl Acad Sci U S A. 1971 Aug;68(8):1786–1790. doi: 10.1073/pnas.68.8.1786. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hatlen L. E., Amaldi F., Attardi G. Oligonucleotide pattern after pancreatic ribonuclease digestion and the 3' and 5' termini of 5S ribonucleic acid from HeLa cells. Biochemistry. 1969 Dec;8(12):4989–5005. doi: 10.1021/bi00840a048. [DOI] [PubMed] [Google Scholar]
- Jorgensen S. E., Buch L. B., Nierlich D. P. Nucleoside triphosphate termini from RNA synthesized in vivo by Escherichia coli. Science. 1969 May 30;164(3883):1067–1070. doi: 10.1126/science.164.3883.1067. [DOI] [PubMed] [Google Scholar]
- Konrad M., Toivonen J., Nierlich D. P. Initial nucleotide frequencies of bacterial RNA synthesized during amino-acid starvation or changes of carbon source. Nat New Biol. 1972 Aug 23;238(86):231–233. doi: 10.1038/newbio238231a0. [DOI] [PubMed] [Google Scholar]
- Lutkenhaus J., Ryan J., Konrad M. Kinetics of phosphate incorporation into adenosine triphosphate and guanosine triphosphate in bacteria. J Bacteriol. 1973 Dec;116(3):1113–1123. doi: 10.1128/jb.116.3.1113-1123.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
- MIDGLEY J. E., McCARTHY B. J. The synthesis and kinetic behavior of deoxyribonucleic acid-like ribonucleic acid in bacteria. Biochim Biophys Acta. 1962 Nov 26;61:696–717. doi: 10.1016/0926-6550(62)90053-1. [DOI] [PubMed] [Google Scholar]
- Maitra U., Hurwitz H. The role of DNA in RNA synthesis, IX. Nucleoside triphosphate termini in RNA polymerase products. Proc Natl Acad Sci U S A. 1965 Sep;54(3):815–822. doi: 10.1073/pnas.54.3.815. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Manor H., Goodman D., Stent G. S. RNA chain growth rates in Escherichia coli. J Mol Biol. 1969 Jan 14;39(1):1–29. doi: 10.1016/0022-2836(69)90329-5. [DOI] [PubMed] [Google Scholar]
- Nierlich D. P. Regulation of ribonucleic acid synthesis in growing bacterial cells. II. Control over the composition of the newly made RNA. J Mol Biol. 1972 Dec 30;72(3):765–777. doi: 10.1016/0022-2836(72)90190-8. [DOI] [PubMed] [Google Scholar]
- Ryskov A. P., Georgiev G. P. Polyphosphate groups at the 5'-ends of nuclear dRNA fractions. FEBS Lett. 1970 Jun 8;8(4):186–188. doi: 10.1016/0014-5793(70)80259-9. [DOI] [PubMed] [Google Scholar]
- Schedl P., Primakoff P. Mutants of Escherichia coli thermosensitive for the synthesis of transfer RNA. Proc Natl Acad Sci U S A. 1973 Jul;70(7):2091–2095. doi: 10.1073/pnas.70.7.2091. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shehata T. E., Marr A. G. Effect of nutrient concentration on the growth of Escherichia coli. J Bacteriol. 1971 Jul;107(1):210–216. doi: 10.1128/jb.107.1.210-216.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
- TORRIANI A. Influence of inorganic phosphate in the formation of phosphatases by Escherichia coli. Biochim Biophys Acta. 1960 Mar 11;38:460–469. doi: 10.1016/0006-3002(60)91281-6. [DOI] [PubMed] [Google Scholar]
- Vickers T. G., Midgley J. E. Evidence for tRNA precursors in bacteria. Nature. 1971 Oct 13;233(5320):210–212. [PubMed] [Google Scholar]
- WILLSON C., GROS F. PROTEIN SYNTHESIS WITH AN ESCHERICHIA COLI SYSTEM IN VITRO. Biochim Biophys Acta. 1964 Mar 23;80:478–496. doi: 10.1016/0926-6550(64)90151-3. [DOI] [PubMed] [Google Scholar]
- Wilson J. H., Kim J. S., Abelson J. N. Bacteriophage T4 transfer RNA. 3. Clustering of the genes for the T4 transfer RNA's. J Mol Biol. 1972 Nov 28;71(3):547–556. doi: 10.1016/s0022-2836(72)80022-6. [DOI] [PubMed] [Google Scholar]
- Wu M., Davidson N., Carbon J. Physical mapping of the transfer RNA genes on lambda-h80dglytsu+36. J Mol Biol. 1973 Jun 25;78(1):23–34. doi: 10.1016/0022-2836(73)90425-7. [DOI] [PubMed] [Google Scholar]
- Young R. J., Content J. 5'-terminus of influenza virus RNA. Nat New Biol. 1971 Mar 31;230(13):140–142. doi: 10.1038/newbio230140a0. [DOI] [PubMed] [Google Scholar]