Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1974 Jul;119(1):242–249. doi: 10.1128/jb.119.1.242-249.1974

Cell-Free Mercury(II)-Reducing Activity in a Plasmid-Bearing Strain of Escherichia coli

Anne O Summers a,1, Laurence I Sugarman a
PMCID: PMC245595  PMID: 4600700

Abstract

The ability to reduce Hg(II) to Hg(0), which is determined by a plasmid-borne gene in Escherichia coli, is conferred by a Hg(II)-inducible activity which is located in the cytoplasm rather than in the periplasmic space of the cell. This Hg(II)-reducing activity can be isolated from the supernatant of a 160,000 × g centrifugation after French Press disruption of the cells. The activity is dependent on glucose-6-phosphate, glucose-6-phosphate dehydrogenase, and 2-mercaptoethanol, but is not enhanced by added nicotinamide adenine dinucleotide phosphate. Treatment of the active fraction with N-ethylmaleimide causes irreversible loss of the Hg(II)-reducing activity. Unlike the Hg(II)-reducing activity found in intact cells, the cell-free activity is not inhibited by toluene, potassium cyanide, or m-chlorocarbonylcyanide-phenylhydrazone; however, it is inhibited by Ag(I) and phenylmercuric acetate to the same extent as the activity in intact cells. Neither phenylmercuric acetate nor methylmercuric chloride is reduced to Hg(0) by the cell-free activity. Au(III), however, is a substrate for the cell-free activity; it is reduced to metallic colloidal Au(0).

Full text

PDF
242

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Harwood J. H., Smith D. H. Resistance factor-mediated streptomycin resistance. J Bacteriol. 1969 Mar;97(3):1262–1271. doi: 10.1128/jb.97.3.1262-1271.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Harwood J., Smith D. H. Catabolite repression of chloramphenicol acetyl transferase synthesis in E. coli K12. Biochem Biophys Res Commun. 1971 Jan 8;42(1):57–62. doi: 10.1016/0006-291x(71)90361-5. [DOI] [PubMed] [Google Scholar]
  3. Komura I., Funaba T., Izaki K. Mechanism of mercuric chloride resistance in microorganisms. II. NADPH-dependent reduction of mercuric chloride and vaporization of mercury from mercuric chloride by a multiple drug resistant strain of Escherichia coli. J Biochem. 1971 Dec;70(6):895–901. doi: 10.1093/oxfordjournals.jbchem.a129719. [DOI] [PubMed] [Google Scholar]
  4. Komura I., Izaki K. Mechanism of mercuric chloride resistance in microorganisms. I. Vaporization of a mercury compound from mercuric chloride by multiple drug resistant strains of Escherichia coli. J Biochem. 1971 Dec;70(6):885–893. doi: 10.1093/oxfordjournals.jbchem.a129718. [DOI] [PubMed] [Google Scholar]
  5. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  6. MAGOS L., TUFFERY A. A., CLARKSON T. W. VOLATILIZATION OF MERCURY BY BACTERIA. Br J Ind Med. 1964 Oct;21:294–298. doi: 10.1136/oem.21.4.294. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Neu H. C., Winshell E. B. Purification and characterization of penicillinases from Salmonella typhimurium and Escherichia coli. Arch Biochem Biophys. 1970 Aug;139(2):278–290. doi: 10.1016/0003-9861(70)90479-0. [DOI] [PubMed] [Google Scholar]
  8. Nossal N. G., Heppel L. A. The release of enzymes by osmotic shock from Escherichia coli in exponential phase. J Biol Chem. 1966 Jul 10;241(13):3055–3062. [PubMed] [Google Scholar]
  9. Shaw W. V. The problems of drug-resistant pathogenic bacteria. Comparative enzymology of chloramphenicol resistance. Ann N Y Acad Sci. 1971 Jun 11;182:234–242. doi: 10.1111/j.1749-6632.1971.tb30660.x. [DOI] [PubMed] [Google Scholar]
  10. Summers A. O., Lewis E. Volatilization of mercuric chloride by mercury-resistant plasmid-bearing strains of Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa. J Bacteriol. 1973 Feb;113(2):1070–1072. doi: 10.1128/jb.113.2.1070-1072.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Summers A. O., Silver S. Mercury resistance in a plasmid-bearing strain of Escherichia coli. J Bacteriol. 1972 Dec;112(3):1228–1236. doi: 10.1128/jb.112.3.1228-1236.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Wood J. M., Kennedy F. S., Rosen C. G. Synthesis of methyl-mercury compounds by extracts of a methanogenic bacterium. Nature. 1968 Oct 12;220(5163):173–174. doi: 10.1038/220173a0. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES