Abstract
l-Arabinose was metabolized through an oxidative pathway by extracts of a strain of Rhizobium japonicum. The findings showed that l-arabinose is converted into 2-keto-3-deoxy-l-arabonate, which is cleaved into glycoaldehyde and pyruvate.
Full text
PDF


Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- ALLEN E. K., ALLEN O. N. Biochemical and symbiotic properties of the rhizobia. Bacteriol Rev. 1950 Dec;14(4):273–330. doi: 10.1128/br.14.4.273-330.1950. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dahms A. S., Anderson R. L. 2-keto-3-deoxyl-L-arabonate aldolase and its role in a new pathway of L-arabinose degradation. Biochem Biophys Res Commun. 1969 Aug 22;36(5):809–814. doi: 10.1016/0006-291x(69)90681-0. [DOI] [PubMed] [Google Scholar]
- Dahms A. S., Anderson R. L. D-Fucose metabolism in a pseudomonad. II. Oxidation of D-fucose to D-fucono- -lactone by an L-arabino-aldose dehydrogenase and hydrolysis of the lactone by a lactonase. J Biol Chem. 1972 Apr 10;247(7):2228–2232. [PubMed] [Google Scholar]
- Johnson G. V., Evans H. J., Ching T. Enzymes of the glyoxylate cycle in rhizobia and nodules of legumes. Plant Physiol. 1966 Oct;41(8):1330–1336. doi: 10.1104/pp.41.8.1330. [DOI] [PMC free article] [PubMed] [Google Scholar]
- MACGEE J., DOUDOROFF M. A new phosphorylated intermediate in glucose oxidation. J Biol Chem. 1954 Oct;210(2):617–626. [PubMed] [Google Scholar]
- Martinez De Drets G., Arias A. Metabolism of some polyols by Rhizobium meliloti. J Bacteriol. 1970 Jul;103(1):97–103. doi: 10.1128/jb.103.1.97-103.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Neal O. R., Walker R. H. Physiological Studies on Rhizobium: IV. Utilization of Carbonaceous Materials. J Bacteriol. 1935 Aug;30(2):173–187. doi: 10.1128/jb.30.2.173-187.1935. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sherwood M. T. Improved synthetic medium for the growth of Rhizobium. J Appl Bacteriol. 1970 Dec;33(4):708–713. doi: 10.1111/j.1365-2672.1970.tb02253.x. [DOI] [PubMed] [Google Scholar]
- Stoolmiller A. C., Abeles R. H. Formation of alpha-ketoglutaric semialdehyde from L-2-keto-3-deoxyarabonic acid and isolation of L-2-keto-3-deoxyarabonate dehydratase from Pseudomonas saccharophila. J Biol Chem. 1966 Dec 25;241(24):5764–5771. [PubMed] [Google Scholar]
- Thorne D. W., Burris R. H. Respiratory Enzyme Systems in Symbiotic Nitrogen Fixation: III. The Respiration of Rhizobium from Legume Nodules and Laboratory Cultures. J Bacteriol. 1940 Feb;39(2):187–196. doi: 10.1128/jb.39.2.187-196.1940. [DOI] [PMC free article] [PubMed] [Google Scholar]
- WEIMBERG R. L-2-Keto-4,5-dihydroxyvaleric acid: an intermediate in the oxidation of L-arabinose by Pseudomonas saccharophila. J Biol Chem. 1959 Apr;234(4):727–732. [PubMed] [Google Scholar]
- WEISSBACH A., HURWITZ J. The formation of 2-keto-3-deoxyheptonic acid in extracts of Escherichia coli B. I. Identification. J Biol Chem. 1959 Apr;234(4):705–709. [PubMed] [Google Scholar]
- YONETANI T. Studies on cytochrome oxidase. I. Absolute and difference absorption spectra. J Biol Chem. 1960 Mar;235:845–852. [PubMed] [Google Scholar]
