Abstract
The ability of auxotrophs of Neurospora crassa to grow on certain tripeptides, despite the presence of excess competing amino acids, suggests it has an oligopeptide transport system. In general, dipeptides did not support growth except in those instances where extracellular hydrolysis occurred, or where the dipeptide appeared to be accumulated by an uptake system which is sensitive to inhibition by free amino acids. Considerable intracellular peptidase activity toward a large number of peptides was demonstrated, including a number of peptides which could not be utilized for growth. The intracellular peptidase activity was shown to be selective for amino acid composition and sequence (N-terminal or C-terminal) within the peptide; glycine-containing peptides were particularly poor substrates for peptidase activity. Only a small amount of extracellular peptidase activity could be detected.
Full text
PDF







Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Batt E. R., Schachter D. Effects of phloretin and synthetic estrogens on beta-galactoside transport in Escherichia coli. Biochim Biophys Acta. 1971 Mar 9;233(1):189–200. doi: 10.1016/0005-2736(71)90371-3. [DOI] [PubMed] [Google Scholar]
- Becker J. M., Naider F., Katchalski E. Peptide utilization in yeast. Studies on methionine and lysine auxotrophs of Saccharomyces cerevisiae. Biochim Biophys Acta. 1973 Jan 26;291(2):388–397. doi: 10.1016/0005-2736(73)90491-4. [DOI] [PubMed] [Google Scholar]
- CATCHESIDE D. G. Isolation of nutritional mutants of Neurospora crassa by filtration enrichment. J Gen Microbiol. 1954 Aug;11(1):34–36. doi: 10.1099/00221287-11-1-34. [DOI] [PubMed] [Google Scholar]
- Choke H. C. Mutants of NEUROSPORA CRASSA Permeable to Histidinol. Genetics. 1969 Aug;62(4):725–733. doi: 10.1093/genetics/62.4.725. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Coffey J. W., De Duve C. Digestive activity of lysosomes. I. The digestion of proteins by extracts of rat liver lysosomes. J Biol Chem. 1968 Jun 25;243(12):3255–3263. [PubMed] [Google Scholar]
- DeBusk B. G., DeBusk A. G. Molecular transport in Neurospora crassa. I. Biochemical properties of a phenylalanine permease. Biochim Biophys Acta. 1965 Jun 15;104(1):139–150. doi: 10.1016/0304-4165(65)90229-1. [DOI] [PubMed] [Google Scholar]
- Drucker H. Regulation of exocellular proteases in Neurospora crassa: induction and repression of enzyme synthesis. J Bacteriol. 1972 Jun;110(3):1041–1049. doi: 10.1128/jb.110.3.1041-1049.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hanson M. A., Marzluf G. A. Regulation of a sulfur-controlled protease in Neurospora crassa. J Bacteriol. 1973 Nov;116(2):785–789. doi: 10.1128/jb.116.2.785-789.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Lis M. T., Crampton R. F., Matthews D. M. Rates of absorption of a dipeptide and the equivalent free amino acid in various mammalian species. Biochim Biophys Acta. 1971 Apr 13;233(2):453–455. doi: 10.1016/0005-2736(71)90342-7. [DOI] [PubMed] [Google Scholar]
- MATHIESON M. J., CATCHESIDE D. G. Inhibition of histidine uptake in Neurospora crassa. J Gen Microbiol. 1955 Aug;13(1):72–83. doi: 10.1099/00221287-13-1-72. [DOI] [PubMed] [Google Scholar]
- Magill C. W., Nelson S. O., D'Ambrosio S. M., Glover G. I. Histidine uptake in mutant strains of Neurospora crassa via the general transport system for amino acids. J Bacteriol. 1973 Mar;113(3):1320–1325. doi: 10.1128/jb.113.3.1320-1325.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Magill C. W., Sweeney H., Woodward V. W. Histidine uptake in strains of Neurospora crassa with normal and mutant transport systems. J Bacteriol. 1972 Apr;110(1):313–320. doi: 10.1128/jb.110.1.313-320.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Naider F., Becker J. M., Katzir-Katchalski E. Utilization of methionine-containing peptides and their derivatives by a methionine-requiring auxotroph of Saccharomyces cerevisiae. J Biol Chem. 1974 Jan 10;249(1):9–20. [PubMed] [Google Scholar]
- Pall M. L. Amino acid transport in Neurospora crassa. 3. Acidic amino acid transport. Biochim Biophys Acta. 1970 Sep 15;211(3):513–520. doi: 10.1016/0005-2736(70)90256-7. [DOI] [PubMed] [Google Scholar]
- Patterson E. K., Gatmaitan J. S., Hayman S. Substrate specificity and pH dependence of dipeptidases purified from Escherichia coli B and from mouse ascites tumor cells. Biochemistry. 1973 Sep 11;12(19):3701–3709. doi: 10.1021/bi00743a020. [DOI] [PubMed] [Google Scholar]
- Rubino A., Field M., Shwachman H. Intestinal transport of amino acid residues of dipeptides. I. Influx of the glycine residue of glycyl-L-proline across mucosal border. J Biol Chem. 1971 Jun 10;246(11):3542–3548. [PubMed] [Google Scholar]
- Stadler D. R. Genetic control of the uptake of amino acids in Neurospora. Genetics. 1966 Aug;54(2):677–685. doi: 10.1093/genetics/54.2.677. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thwaites W. M., Pendyala L. Regulation of amino acid assimilation in a strain of Neurospora crassa lacking basic amino acid transport activity. Biochim Biophys Acta. 1969 Dec 30;192(3):455–461. doi: 10.1016/0304-4165(69)90394-8. [DOI] [PubMed] [Google Scholar]
- Whitaker J. R., Caldwell P. V. Unusual kinetic behavior of Endothia parasitica protease in hydrolysis of small peptides. Arch Biochem Biophys. 1973 Nov;159(1):188–200. doi: 10.1016/0003-9861(73)90444-x. [DOI] [PubMed] [Google Scholar]
- Wiley W. R., Matchett W. H. Tryptophan transport in Neurospora crassa. II. Metabolic control. J Bacteriol. 1968 Mar;95(3):959–966. doi: 10.1128/jb.95.3.959-966.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wolfinbarger L., Jr, Debusk A. G. Molecular transport. I. In vivo studies of transport mutants of Neurospora crassa with altered amino acid competition patterns. Arch Biochem Biophys. 1971 Jun;144(2):503–511. doi: 10.1016/0003-9861(71)90355-9. [DOI] [PubMed] [Google Scholar]
- Wolfinbarger L., Jr, Kay W. W. Acidic amino acid transport in Neurospora crassa mycelia. Biochim Biophys Acta. 1973 Dec 22;330(3):335–343. doi: 10.1016/0005-2736(73)90238-1. [DOI] [PubMed] [Google Scholar]
- Wolfinbarger L., Jr, Kay W. W. Transport of C 4 -dicarboxylic acids in Neurospora crassa. Biochim Biophys Acta. 1973 Apr 25;307(1):243–257. doi: 10.1016/0005-2736(73)90041-2. [DOI] [PubMed] [Google Scholar]