Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1974 Aug;119(2):484–493. doi: 10.1128/jb.119.2.484-493.1974

Trehalose Metabolism by Bacillus popilliae1

Amaret Bhumiratana a, Richard L Anderson b, Ralph N Costilow c
PMCID: PMC245631  PMID: 4369400

Abstract

Trehalose was found to be utilized more readily than glucose for the growth of Bacillus popilliae NRRL B-2309MC. The pathway of degradation of trehalose was elucidated and found to differ from that reported for other organisms. Trehalase and trehalose phosphorylase activities could not be detected. Rather, trehalose was found to undergo phosphoenolpyruvate (PEP)-dependent phosphorylation, and the resulting trehalose 6-phosphate was cleaved by a phosphotrehalase to equimolar amounts of glucose and glucose 6-phosphate. The phosphotrehalase was purified 34-fold and shown to have a pH optimum of 6.5 to 7.0 and a Km for trehalose 6-phosphate of 1.8 mM. A mutant missing the phosphotrehalase failed to grow on trehalose but grew normally on other sugars. The mutant accumulated [14C]trehalose as [14C]trehalose 6-phosphate. Phosphorylation of trehalose by dialyzed extracts was at least 25 times faster with PEP than with adenosine 5′-triphosphate, and the phosphorylation activity was associated primarily with the particulate fraction. These data and the results of studies of [14C]trehalose uptake suggest that trehalose is transported into the cell as trehalose 6-phosphate by a PEP:sugar phosphotransferase system. Cell extracts of other strains of B. popilliae were also found to produce [14C]sugar phosphate from [14C]trehalose and to have phosphotrehalase activity.

Full text

PDF
484

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Belocopitow E., Maréchal L. R. Trehalose phosphorylase from Euglena gracilis. Biochim Biophys Acta. 1970 Jan 14;198(1):151–154. doi: 10.1016/0005-2744(70)90045-8. [DOI] [PubMed] [Google Scholar]
  2. Bhumiratana A., Costilow R. N. Utilization of -methyl-D-mannoside by Bacillus popilliae. Can J Microbiol. 1973 Feb;19(2):169–176. doi: 10.1139/m73-026. [DOI] [PubMed] [Google Scholar]
  3. Bulla L. A., St Julian G., Rhodes R. A., Hesseltine C. W. Physiology of sporeforming bacteria associated with insects. I. Glucose catabolism in vegetative cells. Can J Microbiol. 1970 Apr;16(4):243–248. doi: 10.1139/m70-045. [DOI] [PubMed] [Google Scholar]
  4. Costilow R. N., Coulter W. H. Physiological studies of an oligosporogenous strain of Bacillus popilliae. Appl Microbiol. 1971 Dec;22(6):1076–1084. doi: 10.1128/am.22.6.1076-1084.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. DUERKSEN J. D., HALVORSON H. Purification and properties of an inducible beta-glucosidase of yeast. J Biol Chem. 1958 Nov;233(5):1113–1120. [PubMed] [Google Scholar]
  6. ENGLESBERG E., ANDERSON R. L., WEINBERG R., LEE N., HOFFEE P., HUTTENHAUER G., BOYER H. L-Arabinose-sensitive, L-ribulose 5-phosphate 4-epimerase-deficient mutants of Escherichia coli. J Bacteriol. 1962 Jul;84:137–146. doi: 10.1128/jb.84.1.137-146.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. ENGLESBERG E., BARON L. S. Mutation to L-rhamnose resistance and transduction to L-rhamnose utilization in Salmonella typhosa. J Bacteriol. 1959 Nov;78:675–686. doi: 10.1128/jb.78.5.675-686.1959. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. ENGLESBERG E. Inhibition of the growth of Salmonella typhosa by L-rhamnose. J Bacteriol. 1960 Jan;79:58–64. doi: 10.1128/jb.79.1.58-64.1960. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. HILL E. P., SUSSMAN A. S. PURIFICATION AND PROPERTIES OF TREHALASE (S) FROM NEUROSPORA. Arch Biochem Biophys. 1963 Sep;102:389–396. doi: 10.1016/0003-9861(63)90246-7. [DOI] [PubMed] [Google Scholar]
  10. Hengstenberg W., Egan J. B., Morse M. L. Carbohydrate transport in Staphylococcus aureus. V. The accumulation of phosphorylated carbohydrate derivatives, and evidence for a new enzyme-splitting lactose phosphate. Proc Natl Acad Sci U S A. 1967 Jul;58(1):274–279. doi: 10.1073/pnas.58.1.274. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kennedy E. P., Scarborough G. A. Mechanism of hydrolysis of O-nitrophenyl-beta-galactoside in Staphylococcus aureus and its significance for theories of sugar transport. Proc Natl Acad Sci U S A. 1967 Jul;58(1):225–228. doi: 10.1073/pnas.58.1.225. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  13. Laue P., MacDonald R. E. Identification of thiomethyl-beta-D-galactoside 6-phosphate accumulated by Staphylococcus aureus. J Biol Chem. 1968 Feb 10;243(3):680–682. [PubMed] [Google Scholar]
  14. McKay L. L., Bhumiratana A., Costilow R. N. Oxidation of acetate by various strains of Bacillus popilliae. Appl Microbiol. 1971 Dec;22(6):1070–1075. doi: 10.1128/am.22.6.1070-1075.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. McKay L. L., Walter L. A., Sandine W. E., Elliker P. R. Involvement of phosphoenolpyruvate in lactose utilization by group N streptococci. J Bacteriol. 1969 Aug;99(2):603–610. doi: 10.1128/jb.99.2.603-610.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. McKay L., Miller A., 3rd, Sandine W. E., Elliker P. R. Mechanisms of lactose utilization by lactic acid streptococci: enzymatic and genetic analyses. J Bacteriol. 1970 Jun;102(3):804–809. doi: 10.1128/jb.102.3.804-809.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. NIKAIDO H. Galactose-sensitive mutants of Salmonella. I. Metabolism of galactose. Biochim Biophys Acta. 1961 Apr 15;48:460–469. doi: 10.1016/0006-3002(61)90044-0. [DOI] [PubMed] [Google Scholar]
  18. PEPPER R. E., COSTILOW R. N. GLUCOSE CATABOLISM BY BACILLUS POPILLIAE AND BACILLUS LENTIMORBUS. J Bacteriol. 1964 Feb;87:303–310. doi: 10.1128/jb.87.2.303-310.1964. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Palmer R. E., Anderson R. L. Cellobiose metabolism in Aerobacter aerogenes. 3. Cleavage of cellobiose monophosphate by a phospho- -glucosidase. J Biol Chem. 1972 Jun 10;247(11):3420–3423. [PubMed] [Google Scholar]
  20. Palmer R. E., Anderson R. L. Cellobiose metabolism in Aerobacter aerogenes. II. Phosphorylation of cellobiose with adenosine 5'-triphosphate by a -glucoside kinase. J Biol Chem. 1972 Jun 10;247(11):3415–3419. [PubMed] [Google Scholar]
  21. Palmer R. E., Anderson R. L. Cellobiose metabolism: a pathway involving adenosine 5'-triphosphate-dependent cleavage of the disaccharide. Biochem Biophys Res Commun. 1971 Oct 1;45(1):125–130. doi: 10.1016/0006-291x(71)90059-3. [DOI] [PubMed] [Google Scholar]
  22. Palmer R. E., Anderson R. L. Metabolism of gentiobiose in Aerobacter aerogenes. J Bacteriol. 1972 Dec;112(3):1316–1320. doi: 10.1128/jb.112.3.1316-1320.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Rhodes R. A., Roth M. S., Hrubant G. R. Sporulation of bacillus popilliae on solid media. Can J Microbiol. 1965 Oct;11(5):779–783. doi: 10.1139/m65-105. [DOI] [PubMed] [Google Scholar]
  24. Rhodes R. A., Sharpe E. S., Hall H. H., Jackson R. W. Characteristics of the vegetative growth of Bacillus popilliae. Appl Microbiol. 1966 Mar;14(2):189–195. doi: 10.1128/am.14.2.189-195.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Romano A. H., Eberhard S. J., Dingle S. L., McDowell T. D. Distribution of the phosphoenolpyruvate: glucose phosphotransferase system in bacteria. J Bacteriol. 1970 Nov;104(2):808–813. doi: 10.1128/jb.104.2.808-813.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Simoni R. D., Nakazawa T., Hays J. B., Roseman S. Sugar transport. IV. Isolation and characterization of the lactose phosphotransferase system in Staphylococcus aureus. J Biol Chem. 1973 Feb 10;248(3):932–940. [PubMed] [Google Scholar]
  27. Simoni R. D., Roseman S. Sugar transport. VII. Lactose transport in Staphylococcus aureus. J Biol Chem. 1973 Feb 10;248(3):966–974. [PubMed] [Google Scholar]
  28. Splittstoesser D. F., Farkas D. F. Effect of cations on activation of Bacillus popilliae spores. J Bacteriol. 1966 Oct;92(4):995–1001. doi: 10.1128/jb.92.4.995-1001.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. TOENNIES G., KOLB J. J. CARBOHYDRATE ANALYSIS OF BACTERIAL SUBSTANCES BY A NEW ANTHRONE PROCEDURE. Anal Biochem. 1964 May;8:54–69. doi: 10.1016/0003-2697(64)90168-x. [DOI] [PubMed] [Google Scholar]
  30. TREVELYAN W. E., PROCTER D. P., HARRISON J. S. Detection of sugars on paper chromatograms. Nature. 1950 Sep 9;166(4219):444–445. doi: 10.1038/166444b0. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES