Abstract
Branched- and straight-chain alkanes are metabolized by Brevibacterium erythrogenes by means of two distinct pathways. Normal alkanes (e.g., n-pentadecane) are degraded, after terminal oxidation, by the beta-oxidation system operational in fatty acid catabolism. Branched alkanes like pristane (2,6,10,14-tetramethylpentadecane) and 2-methylundecane are degraded as dicarboxylic acids, which also undergo beta-oxidation. Pristane-derived intermediates are observed to accumulate, with time, as a series of dicarboxylic acids. This dicarboxylic acid pathway is not observed in the presence of normal alkanes. Release of 14CO2 from [1-14C]pristane is delayed, or entirely inhibited, in the presence of n-hexadecane, whereas CO2 release from n-hexadecane remains unaffected. These results suggest an inducible dicarboxylic acid pathway for degradation of branched-chain alkanes.
Full text
PDF










Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Atlas R. M., Bartha R. Degradation and mineralization of petroleum by two bacteria isolated from coastal waters. Biotechnol Bioeng. 1972 May;14(3):297–308. doi: 10.1002/bit.260140303. [DOI] [PubMed] [Google Scholar]
- Atlas R. M., Bartha R. Inhibition by fatty acids of the biodegradation of petroleum. Antonie Van Leeuwenhoek. 1973;39(2):257–271. doi: 10.1007/BF02578858. [DOI] [PubMed] [Google Scholar]
- FOSTER J. W. Hydrocarbons as substrates for microorganisms. Antonie Van Leeuwenhoek. 1962;28:241–274. doi: 10.1007/BF02538739. [DOI] [PubMed] [Google Scholar]
- Fredricks K. M. Adaptation of bacteria from one type of hydrocarbon to another. Nature. 1966 Mar 5;209(5027):1047–1048. doi: 10.1038/2091047a0. [DOI] [PubMed] [Google Scholar]
- HERINGA J. W., HUYBREGTSE R., van der LINDEN A. n-Alkane oxidation by a Pseudomonas. Formation and beta-oxidation of intermediate fatty acids. Antonie Van Leeuwenhoek. 1961;27:51–58. doi: 10.1007/BF02538422. [DOI] [PubMed] [Google Scholar]
- Hansen R. P. 4,8,12-Trimethyltridecanoic acid: its isolation and identification from sheep perinephric fat. Biochim Biophys Acta. 1968 Dec 18;164(3):550–557. doi: 10.1016/0005-2760(68)90184-7. [DOI] [PubMed] [Google Scholar]
- Hutton D., Steinberg D. Identification of propionate as a degradation product of phytanic acid oxidation in rat and human tissues. J Biol Chem. 1973 Oct 10;248(19):6871–6875. [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- MCDANIEL L. E., BAILEY E. G., ZIMMERLI A. EFFECT OF OXYGEN SUPPLY RATES ON GROWTH OF ESCHERICHIA COLI. Appl Microbiol. 1965 Jan;13:109–114. doi: 10.1128/am.13.1.109-114.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McDaniel L. E., Bailey E. G. Effect of shaking speed and type of closure on shake flask cultures. Appl Microbiol. 1969 Feb;17(2):286–290. doi: 10.1128/am.17.2.286-290.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McKenna E. J., Kallio R. E. Microbial metabolism of the isoprenoid alkane pristane. Proc Natl Acad Sci U S A. 1971 Jul;68(7):1552–1554. doi: 10.1073/pnas.68.7.1552. [DOI] [PMC free article] [PubMed] [Google Scholar]
- THIJSSE G. J., van der LINDEN A. Iso-alkane oxidation by a Pseudomonas. I. Metabolism of 2-methylhexane. Antonie Van Leeuwenhoek. 1961;27:171–179. doi: 10.1007/BF02538437. [DOI] [PubMed] [Google Scholar]
- Veldkamp H. Saprophytic coryneform bacteria. Annu Rev Microbiol. 1970;24:209–240. doi: 10.1146/annurev.mi.24.100170.001233. [DOI] [PubMed] [Google Scholar]