Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1974 Oct;120(1):59–65. doi: 10.1128/jb.120.1.59-65.1974

Ultraviolet Sensitivity of Bacillus subtilis Spores upon Germination and Outgrowth

Nobuo Munakata a,1
PMCID: PMC245730  PMID: 4213680

Abstract

A strain of Bacillus subtilis, UVSSP-42-1, which produces ultraviolet (UV)-sensitive spores and vegetative cells, was found to possess germinated spores 25 times more UV resistant than the resting spores. This relative resistance achieved upon germination was associated with the transition of the heat-resistant refractile spores to the heat-sensitive phase-dark forms. Several generations of outgrowth were required before the cells attained the level of UV sensitivity characteristic of the vegetative cell. The UV sensitivity of germinated spores was compared with other strains with various combinations of mutations affecting deoxyribonucleic acid repair capabilities. The presence of hcr and ssp mutations which are known to abolish the removal of photoproducts from deoxyribonucleic acid did not alter significantly the sensitivity of the germinated forms. However, the addition of the recA mutation and, to some extent, the pol mutation increased the UV sensitivity of the germinated spores. These results indicate that deoxyribonucleic acid repair mechanisms dependent on the recA gene are active in the germinated spores. The chemical nature of the damage repaired by the recA gene product is not known. This study indicates that the life cycle of sporulating bacilli consists of at least three photobiologically distinct forms: spore, germinated spore, and vegetative cell.

Full text

PDF
59

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Donnellan J. E., Jr, Stafford R. S. The ultraviolet photochemistry and photobiology of vegetative cells and spores of Bacillus megaterium. Biophys J. 1968 Jan;8(1):17–28. doi: 10.1016/S0006-3495(68)86471-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Dubnau D., Davidoff-Abelson R., Scher B., Cirigliano C. Fate of transforming deoxyribonucleic acid after uptake by competent Bacillus subtilis: phenotypic characterization of radiation-sensitive recombination-deficient mutants. J Bacteriol. 1973 Apr;114(1):273–286. doi: 10.1128/jb.114.1.273-286.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. FARMER J. L., ROTHMAN F. TRANSFORMABLE THYMINE-REQUIRING MUTANT OF BACILLUS SUBTILS. J Bacteriol. 1965 Jan;89:262–263. doi: 10.1128/jb.89.1.262-263.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Hoch J. A., Barat M., Anagnostopoulos C. Transformation and transduction in recombination-defective mutants of Bacillus subtilis. J Bacteriol. 1967 Jun;93(6):1925–1937. doi: 10.1128/jb.93.6.1925-1937.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Irie R., Yano N., Morichi T., Kembo H. Temporary increase in UV-resistance in the course of spore germination of Bacillus subtilis. Biochem Biophys Res Commun. 1965 Aug 16;20(4):389–392. doi: 10.1016/0006-291x(65)90588-7. [DOI] [PubMed] [Google Scholar]
  6. Johnston G. C., Young I. E. Variability of DNA content in individual cells of Bacillus. Nat New Biol. 1972 Aug 9;238(84):164–166. doi: 10.1038/newbio238164a0. [DOI] [PubMed] [Google Scholar]
  7. Munakata N. Genetic analysis of a mutant of Bacillus subtilis producingltraviolet-sensitive spores. Mol Gen Genet. 1969 Jul 3;104(3):258–263. doi: 10.1007/BF02539290. [DOI] [PubMed] [Google Scholar]
  8. Munakata N., Ikeda Y. A mutant of Bacillus subtilis producing ultraviolet-sensitive spores. Biochem Biophys Res Commun. 1968 Nov 8;33(3):469–475. doi: 10.1016/0006-291x(68)90597-4. [DOI] [PubMed] [Google Scholar]
  9. Munakata N., Rupert C. S. Genetically controlled removal of "spore photoproduct" from deoxyribonucleic acid of ultraviolet-irradiated Bacillus subtilis spores. J Bacteriol. 1972 Jul;111(1):192–198. doi: 10.1128/jb.111.1.192-198.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Prakash L., Strauss B. Repair of alkylation damage: stability of methyl groups in Bacillus subtilis treated with methyl methanesulfonate. J Bacteriol. 1970 Jun;102(3):760–766. doi: 10.1128/jb.102.3.760-766.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. STUY J. H. Studies on the mechanism of radiation in activation of micro-organisms. III. Inactivation of germinating spores of Bacillus cereus. Biochim Biophys Acta. 1956 Nov;22(2):241–246. doi: 10.1016/0006-3002(56)90146-9. [DOI] [PubMed] [Google Scholar]
  12. STUY J. H. Studies on the mechanism of radiation inactivation of micro-organism. II. Photoreactivation of some bacilli and of the spores of two Bacillus cereus strains. Biochim Biophys Acta. 1956 Nov;22(2):238–240. doi: 10.1016/0006-3002(56)90145-7. [DOI] [PubMed] [Google Scholar]
  13. Smith K. C., Yoshikawa H. Variation in the photochemical reactivity of thymine in the DNA of B. subtilis spores, vegetative cells and spores germinated in chloramphenicol. Photochem Photobiol. 1966 Oct;5(10):777–786. doi: 10.1111/j.1751-1097.1966.tb05773.x. [DOI] [PubMed] [Google Scholar]
  14. Spizizen J. TRANSFORMATION OF BIOCHEMICALLY DEFICIENT STRAINS OF BACILLUS SUBTILIS BY DEOXYRIBONUCLEATE. Proc Natl Acad Sci U S A. 1958 Oct 15;44(10):1072–1078. doi: 10.1073/pnas.44.10.1072. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Stafford R. S., Donnellan J. E., Jr Photochemical evidence for conformation changes in DNA during germination of bacterial spores. Proc Natl Acad Sci U S A. 1968 Mar;59(3):822–828. doi: 10.1073/pnas.59.3.822. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Varghese A. J. 5-Thyminyl-5,6-dihydrothymine from DNA irradiated with ultraviolet light. Biochem Biophys Res Commun. 1970 Feb 6;38(3):484–490. doi: 10.1016/0006-291x(70)90739-4. [DOI] [PubMed] [Google Scholar]
  17. WOESE C. A study of the changes occurring in radiosensitivity during spore germination. Radiat Res. 1959 Sep;11:390–398. [PubMed] [Google Scholar]
  18. Yoshikawa H. Chromosomes in Bacillus subtilis spores and their segregation during germination. J Bacteriol. 1968 Jun;95(6):2282–2292. doi: 10.1128/jb.95.6.2282-2292.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES