Abstract
Particulate preparations from sporulating cells of Bacillus sphaericus 9602 contained an endopeptidase activity that hydrolyzed the γ-d-glutamyl-(l)meso-diaminopimelic acid linkages found in the spore cortical peptidoglycan of this organism. Diaminopimelic acid did not occur in the vegetative cell wall peptidoglycan, and the γ-d-glutamyl-l-lysine linkages found in this polymer were not hydrolyzed by the endopeptidase. The endopeptidase hydrolyzed (X)-l-alanyl-γ-d-glutamyl-(l)meso-diaminopimelyl(l)-d-alanyl-d-alanine only after removal of the terminal d-alanine residue. The preparations contained an acyl-d-alanyl-d-alanine carboxypeptidase I activity which converted such pentapeptides into substrates for the endopeptidase and which was inhibited 50% by 4 × 10−7 M benzylpenicillin. This activity also hydrolyzed the analogous pentapeptide substrates containing l-lysine. The preparations also contained an acyl-l-lysyl-d-alanine carboxypeptidase II activity that was not active on the meso-diaminopimelic acid-containing analogue. Neither this activity nor the endopeptidase was inhibited by 10−3 M benzylpenicillin. The specificities of the carboxypeptidases were consistent with the exclusive presence of l-lysine C-termini in the vegetative peptidoglycan and of meso-diaminopimelyl-d-alanine C-termini in the spore cortical peptidoglycan of B. sphaericus 9602.
Full text
PDFImages in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Best G. K., Mattingly S. J. Chemical analysis of cell walls and autolytic digests of Bacillus psychrophilus. J Bacteriol. 1973 Jul;115(1):221–227. doi: 10.1128/jb.115.1.221-227.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cheng H. M., Aronson A. I., Holt S. C. Role of glutathione in the morphogenesis of the bacterial spore coat. J Bacteriol. 1973 Mar;113(3):1134–1143. doi: 10.1128/jb.113.3.1134-1143.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ghuysen J. M., Dierickx L., Coyette J., Leyh-Bouille M., Guinand M., Campbell J. N. An improved technique for the preparation of Streptomyces peptidases and N-acetylmuramyl-l-alanine amidase active on bacterial wall peptidoglycans. Biochemistry. 1969 Jan;8(1):213–222. doi: 10.1021/bi00829a031. [DOI] [PubMed] [Google Scholar]
- Hungerer K. D., Tipper D. J. Cell wall polymers of Bacillus sphaericus 9602. I. Structure of the vegetative cell wall peptidoglycan. Biochemistry. 1969 Sep;8(9):3577–3587. doi: 10.1021/bi00837a013. [DOI] [PubMed] [Google Scholar]
- Izaki K., Matsuhashi M., Strominger J. L. Biosynthesis of the peptidoglycan of bacterial cell walls. 8. Peptidoglycan transpeptidase and D-alanine carboxypeptidase: penicillin-sensitive enzymatic reaction in strains of Escherichia coli. J Biol Chem. 1968 Jun 10;243(11):3180–3192. [PubMed] [Google Scholar]
- Izaki K., Strominger J. L. Biosynthesis of the peptidoglycan of bacterial cell walls. XIV. Purification and properties of two D-alanine carboxypeptidases from Escherichia coli. J Biol Chem. 1968 Jun 10;243(11):3193–3201. [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Leyh-Bouille M., Coyette J., Ghuysen J. M., Idczak J., Perkins H. R., Nieto M. Penicillin-sensitive DD-carboxypeptidase from Streptomyces strain R 61. Biochemistry. 1971 May 25;10(11):2163–2170. doi: 10.1021/bi00787a032. [DOI] [PubMed] [Google Scholar]
- Leyh-Bouille M., Nakel M., Frère J. M., Johnson K., Ghuysen J. M., Nieto M., Perkins H. R. Penicillin-sensitive DD-carboxypeptidases from Streptomyces strains R39 and K11. Biochemistry. 1972 Mar 28;11(7):1290–1298. doi: 10.1021/bi00757a027. [DOI] [PubMed] [Google Scholar]
- ORLOWSKI M., MEISTER A. GAMMA-GLUTAMYL-P-NITROANILIDE: A NEW CONVENIENT SUBSTRATE FOR DETERMINATION AND STUDY OF L- AND D-GAMMA-GLUTAMYLTRANSPEPTIDASE ACTIVITIES. Biochim Biophys Acta. 1963 Aug 6;73:679–681. doi: 10.1016/0006-3002(63)90348-2. [DOI] [PubMed] [Google Scholar]
- ORLOWSKI M., MEISTER A. ISOLATION OF GAMMA-GLUTAMYL TRANSPEPTIDASE FROM HOG KIDNEY. J Biol Chem. 1965 Jan;240:338–347. [PubMed] [Google Scholar]
- Tipper D. J., Pratt I. Cell wall polymers of Bacillus sphaericus 9602. II. Synthesis of the first enzyme unique to cortex synthesis during sporulation. J Bacteriol. 1970 Aug;103(2):305–317. doi: 10.1128/jb.103.2.305-317.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Van Heijenoort J., Elbaz L., Dezélée P., Petit J. F., Bricas E., Ghuysen J. M. Structure of the meso-diaminopimelic acid containing peptidoglycans in Escherichia coli B and Bacillus megaterium KM. Biochemistry. 1969 Jan;8(1):207–213. doi: 10.1021/bi00829a030. [DOI] [PubMed] [Google Scholar]
- WILLIAMS W. J., LITWIN J., THORNE C. B. Further studies on the biosynthesis of gamma-glutamyl peptides by transfer reactions. J Biol Chem. 1955 Jan;212(1):427–438. [PubMed] [Google Scholar]
- Warth A. D., Strominger J. L. Structure of the peptidoglycan of bacterial spores: occurrence of the lactam of muramic acid. Proc Natl Acad Sci U S A. 1969 Oct;64(2):528–535. doi: 10.1073/pnas.64.2.528. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Welker N. E. Structure of the cell wall of Bacillus stearothermophiluys: mode of action of a thermophilic bacteriophage lytic enzyme. J Bacteriol. 1971 Sep;107(3):697–703. doi: 10.1128/jb.107.3.697-703.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wickus G. G., Strominger J. L. Penicillin-sensitive transpeptidation during peptidoglycan biosynthesis in cell-free preparations from Bacillus megaterium. II. Effect of penicillins and cephalosporins on bacterial growth and in vitro transpeptidation. J Biol Chem. 1972 Sep 10;247(17):5307–5311. [PubMed] [Google Scholar]