Abstract
The bisulfite reductase (P582) from Desulfotomaculum nigrificans was purified to homogeneity as judged by polyacrylamide gel electrophoresis. By colorimetric methods of analysis, the products of bisulfite reduction by this enzyme were determined to be trithionate, thiosulfate, and sulfide. Of these, trithionate was consistently found to be the major product, whereas the latter two were formed in lesser quantities. When [35S]bisulfite was incorporated as substrate, no labeled sulfide was detected. Furthermore, when trithionate and thiosulfate were isolated from reaction mixtures and chemically degraded, 35S was found in all three sulfur atoms of trithionate; however, only the inner sulfur atom of thiosulfate was radioactive. From these data we conclude that the bisulfite reductase of D. nigrificans reduces bisulfite to trithionate and that thiosulfate and sulfide are endogenous side products of the reaction.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Akagi J. M., Adams V. Isolation of a bisulfite reductase activity from Desulfotomaculum nigrificans and its identification as the carbon monoxide-binding pigment P582. J Bacteriol. 1973 Oct;116(1):392–396. doi: 10.1128/jb.116.1.392-396.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Akagi J. M., Campbell L. L. STUDIES ON THERMOPHILIC SULFATE-REDUCING BACTERIA III. : Adenosine Triphosphate-sulfurylase of Clostridium nigrificans and Desulfovibrio desulfuricans. J Bacteriol. 1962 Dec;84(6):1194–1201. doi: 10.1128/jb.84.6.1194-1201.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Findley J. E., Akagi J. M. Evidence for thiosulfate formation during sulfite reduction by Desulfovibrio vulgaris. Biochem Biophys Res Commun. 1969 Jul 23;36(2):266–271. doi: 10.1016/0006-291x(69)90324-6. [DOI] [PubMed] [Google Scholar]
- Findley J. E., Akagi J. M. Role of thiosulfate in bisulfite reduction as catalyzed by Desulfovibrio vulgaris. J Bacteriol. 1970 Sep;103(3):741–744. doi: 10.1128/jb.103.3.741-744.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jones H. E., Skyring G. W. Reduction of sulphite to sulphide catalysed by desulfoviridin from Desulfovibrio gigas. Aust J Biol Sci. 1974 Feb;27(1):7–14. [PubMed] [Google Scholar]
- Kobayashi K., Seki Y., Ishimoto M. Biochemical studies on sulfate-ruducing bacteria. 8. Sulfite reductase from Desulfovibrio vulgaris--mechanism of trithionate, thiosulfate, and sulfide formation and enzymatic properties. J Biochem. 1974 Mar;75(3):519–529. doi: 10.1093/oxfordjournals.jbchem.a130420. [DOI] [PubMed] [Google Scholar]
- Kobayashi K., Tachibana S., Ishimoto M. Intermediary formation of trithionate in sulfite reduction by a sulfate-reducing bacterium. J Biochem. 1969 Jan;65(1):155–157. [PubMed] [Google Scholar]
- Kobayashi K., Takahashi E., Ishimoto M. Biochemical studies on sulfate-reducing bacteria. XI. Purification and some properties of sulfite reductase, desulfoviridin. J Biochem. 1972 Oct;72(4):879–887. doi: 10.1093/oxfordjournals.jbchem.a129982. [DOI] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Lee J. P., LeGall J., Peck H. D., Jr Isolation of assimilatroy- and dissimilatory-type sulfite reductases from Desulfovibrio vulgaris. J Bacteriol. 1973 Aug;115(2):529–542. doi: 10.1128/jb.115.2.529-542.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lee J. P., Peck H. D., Jr Purification of the enzyme reducing bisulfite to trithionate from Desulfovibrio gigas and its identification as desulfoviridin. Biochem Biophys Res Commun. 1971 Nov 5;45(3):583–589. doi: 10.1016/0006-291x(71)90457-8. [DOI] [PubMed] [Google Scholar]
- Lee J. P., Yi C. S., LeGall J., Peck H. D., Jr Isolation of a new pigment, desulforubidin, from Desulfovibrio desulfuricans (Norway strain) and its role in sulfite reduction. J Bacteriol. 1973 Jul;115(1):453–455. doi: 10.1128/jb.115.1.453-455.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Levinthal M., Schiff J. A. Studies of sulfate utilization by algae. 5. Identification of thiosulfate as a major Acid-volatile product formed by a cell-free sulfate-reducing system from chlorella. Plant Physiol. 1968 Apr;43(4):555–562. doi: 10.1104/pp.43.4.555. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nakatsukasa W., Akagi J. M. Thiosulfate reductase isolated from Desulfotomaculum nigrificans. J Bacteriol. 1969 May;98(2):429–433. doi: 10.1128/jb.98.2.429-433.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Skyring G. W., Trudinger P. A. A method for the electrophoretic characterization of sulfite reductases in crude preparations from sulfate-reducing bacteria using polyacrylamide gels. Can J Biochem. 1972 Oct;50(10):1145–1148. doi: 10.1139/o72-156. [DOI] [PubMed] [Google Scholar]
- Suh B., Akagi J. M. Formation of thiosulfate from sulfite by Desulfovibrio vulgaris. J Bacteriol. 1969 Jul;99(1):210–215. doi: 10.1128/jb.99.1.210-215.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
- TRUDINGER P. A. Thiosulphate oxidation and cytochromes in Thiobacillus X. 2. Thiosulphate-oxidizing enzyme. Biochem J. 1961 Apr;78:680–686. doi: 10.1042/bj0780680. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Trudinger P. A. Carbon monoxide-reacting pigment from Desulfotomaculum nigrificans and its possible relevance to sulfite reduction. J Bacteriol. 1970 Oct;104(1):158–170. doi: 10.1128/jb.104.1.158-170.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
