Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1974 Oct;120(1):384–389. doi: 10.1128/jb.120.1.384-389.1974

Genetic Location of Two Mutations Affecting the Lysyl-Transfer Ribonucleic Acid Synthetase of Bacillus subtilis

Francis M Racine a,1, William Steinberg a
PMCID: PMC245773  PMID: 4214413

Abstract

Two mutations (lysS1 and lysS2), each independently resulting in a thermosensitive, lysyl-transfer RNA synthetase (l-lysine: tRNA ligase [adenosine 5′-monophosphate] EC 6.1.1.6), have been mapped on the Bacillus subtilis chromosome between purA16 (adenine requirement) and sul (sulfanilamide resistance). They are linked by transformation with sul (70 to 74% cotransfer) in the order purA16-lysS1-lysS2-sul. The mutant loci are either in the same gene or in two closely linked genes. They are not linked to the tryptophanyl-tRNA synthetase structural gene or to the lys-1 locus.

Full text

PDF
384

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anagnostopoulos C., Crawford I. P. Le groupe des gènes régissant la biosynthèse du tryptophane chez Bacillus subtilis. C R Acad Sci Hebd Seances Acad Sci D. 1967 Jul 3;265(1):93–96. [PubMed] [Google Scholar]
  2. Carlton B. C. Fine-structure mapping by transformation in the tryptophan region of Bacillus subtilis. J Bacteriol. 1966 May;91(5):1795–1803. doi: 10.1128/jb.91.5.1795-1803.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Chlumecká V., Von Tigerstrom M., D'Obrenan P., Smith C. J. Purification and properties of lysyl transfer ribonucleic acid synthetase from bakers' yeast. J Biol Chem. 1969 Oct 25;244(20):5481–5488. [PubMed] [Google Scholar]
  4. Clarke S. J., Low B., Konigsberg W. H. Close linkage of the genes serC (for phosphohydroxy pyruvate transaminase) and serS (for seryl-transfer ribonucleic acid synthetase) in Escherichia coli K-12. J Bacteriol. 1973 Mar;113(3):1091–1095. doi: 10.1128/jb.113.3.1091-1095.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Demerec M., Adelberg E. A., Clark A. J., Hartman P. E. A proposal for a uniform nomenclature in bacterial genetics. Genetics. 1966 Jul;54(1):61–76. doi: 10.1093/genetics/54.1.61. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Guerola N., Ingraham J. L., Cerdá-Olmedo E. Induction of closely linked multiple mutations by nitrosoguanidine. Nat New Biol. 1971 Mar 24;230(12):122–125. doi: 10.1038/newbio230122a0. [DOI] [PubMed] [Google Scholar]
  7. Hele P., Barber R. Lysyl tRNA synthetase of Escherichia coli B: formation and reactions of ATP-enzyme and lysyl-AMP-enzyme complexes. Biochim Biophys Acta. 1972 Jan 20;258(1):319–331. doi: 10.1016/0005-2744(72)90989-8. [DOI] [PubMed] [Google Scholar]
  8. Kisselev L. L., Baturina I. D. Two enzymatically active forms of lysyl-tRNA synthetase from E. coli B. FEBS Lett. 1972 May 1;22(2):231–234. doi: 10.1016/0014-5793(72)80052-8. [DOI] [PubMed] [Google Scholar]
  9. LEDERBERG J., LEDERBERG E. M. Replica plating and indirect selection of bacterial mutants. J Bacteriol. 1952 Mar;63(3):399–406. doi: 10.1128/jb.63.3.399-406.1952. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Marshall R. D., Zamecnik P. C. Aspects of the kinetic properties of lysyl-tRNA synthetase from Escherichia coli, strain B. Biochim Biophys Acta. 1970 Feb 11;198(2):376–385. doi: 10.1016/0005-2744(70)90070-7. [DOI] [PubMed] [Google Scholar]
  11. Racine F. M., Steinberg W. Defects of two temperature-sensitive lysyl-transfer ribonucleic acid synthetase mutants of Bacillus subtilis. J Bacteriol. 1974 Oct;120(1):372–383. doi: 10.1128/jb.120.1.372-383.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Sanderson K. E. Linkage map of Salmonella typhimurium, edition IV. Bacteriol Rev. 1972 Dec;36(4):558–586. doi: 10.1128/br.36.4.558-586.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Spizizen J. TRANSFORMATION OF BIOCHEMICALLY DEFICIENT STRAINS OF BACILLUS SUBTILIS BY DEOXYRIBONUCLEATE. Proc Natl Acad Sci U S A. 1958 Oct 15;44(10):1072–1078. doi: 10.1073/pnas.44.10.1072. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Steinberg W., Anagnostopoulos C. Biochemical and genetic characterization of a temperature-sensitive, tryptophanyl-transfer ribonucleic acid synthetase mutant of Bacillus subtilis. J Bacteriol. 1971 Jan;105(1):6–19. doi: 10.1128/jb.105.1.6-19.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Steinberg W. Properties and developmental roles of the lysyl- and tryptophanyl-transfer ribonucleic acid synthetases of Bacillus subtilis: common genetic origin of the corresponding spore and vegetative enzymes. J Bacteriol. 1974 Apr;118(1):70–82. doi: 10.1128/jb.118.1.70-82.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Steinberg W. Temperature-induced derepression of tryptophan biosynthesis in a tryptophanyl-transfer ribonucleic acid synthetase mutant of Bacillus subtilis. J Bacteriol. 1974 Mar;117(3):1023–1034. doi: 10.1128/jb.117.3.1023-1034.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Taylor A. L., Trotter C. D. Linkage map of Escherichia coli strain K-12. Bacteriol Rev. 1972 Dec;36(4):504–524. doi: 10.1128/br.36.4.504-524.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Yem D. W., Williams L. S. Evidence for the existence of two arginyl-transfer ribonucleic acid synthetase activities in Escherichia coli. J Bacteriol. 1973 Feb;113(2):891–894. doi: 10.1128/jb.113.2.891-894.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES