Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1974 Nov;120(2):657–665. doi: 10.1128/jb.120.2.657-665.1974

Regulation of the Synthesis of the Lactose Repressor

Patricia L Edelmann a,1, Gordon Edlin a
PMCID: PMC245824  PMID: 4616945

Abstract

Measurements of the lactose repressor over a tenfold range of cell growth rates were made on protein extracts from Escherichia coli cultures grown in media with various carbon energy sources. The concentration of lactose repressor varied with the number of genome equivalents per cell over this range in growth rates, suggesting that the number of lactose molecules within the cell is determined by the number of I gene copies present. The timing of repressor synthesis during the cell division cycle and its correlation with deoxyribonucleic acid synthesis was examined by synchronizing the cell division cycle of E. coli ED1039, in which the Lac region has been transposed from 10 to 36 min on the genetic map. Measurements of lactose repressor in the synchronized culture revealed a burst of repressor synthesis at the time of I gene duplication. The concentration of lactose repressor was found to decrease as a function of total cell protein during the division cycle until an increase in synthesis occurred, suggesting that repressor synthesis probably does not occur throughout the division cycle. A model for I gene regulation is proposed.

Full text

PDF
657

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Broda P., Meacock P., Achtman M. Early transfer of genes determining transfer functions by some Hfr strains in Escherichia coli K12. Mol Gen Genet. 1972;116(4):336–347. doi: 10.1007/BF00270090. [DOI] [PubMed] [Google Scholar]
  2. Cooper S., Helmstetter C. E. Chromosome replication and the division cycle of Escherichia coli B/r. J Mol Biol. 1968 Feb 14;31(3):519–540. doi: 10.1016/0022-2836(68)90425-7. [DOI] [PubMed] [Google Scholar]
  3. Frame R., Bishop J. O. The number of sex-factors per chromosome in Escherichia coli. Biochem J. 1971 Jan;121(1):93–103. doi: 10.1042/bj1210093. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Gilbert W., Müller-Hill B. Isolation of the lac repressor. Proc Natl Acad Sci U S A. 1966 Dec;56(6):1891–1898. doi: 10.1073/pnas.56.6.1891. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Gilbert W., Müller-Hill B. The lac operator is DNA. Proc Natl Acad Sci U S A. 1967 Dec;58(6):2415–2421. doi: 10.1073/pnas.58.6.2415. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Ippen K., Miller J. H., Scaife J., Beckwith J. New controlling element in the Lac operon of E. coli. Nature. 1968 Mar 2;217(5131):825–827. doi: 10.1038/217825a0. [DOI] [PubMed] [Google Scholar]
  7. JACOB F., MONOD J. Genetic regulatory mechanisms in the synthesis of proteins. J Mol Biol. 1961 Jun;3:318–356. doi: 10.1016/s0022-2836(61)80072-7. [DOI] [PubMed] [Google Scholar]
  8. Jobe A., Bourgeois S. Lac repressor-operator interaction. 8. Lactose is an anti-inducer of the lac operon. J Mol Biol. 1973 Apr 5;75(2):303–313. doi: 10.1016/0022-2836(73)90023-5. [DOI] [PubMed] [Google Scholar]
  9. Jobe A., Riggs A. D., Bourgeois S. Lac repressor-operator interaction. V. Characterization of super- and pseudo-wild-type repressors. J Mol Biol. 1972 Feb 28;64(1):181–199. doi: 10.1016/0022-2836(72)90328-2. [DOI] [PubMed] [Google Scholar]
  10. Miller J. H., Ippen K., Scaife J. G., Beckwith J. R. The promoter-operator region of the lac operon of Escherichia coli. J Mol Biol. 1968 Dec;38(3):413–420. doi: 10.1016/0022-2836(68)90395-1. [DOI] [PubMed] [Google Scholar]
  11. Myers G. L., Sadler J. R. Mutational inversion of control of the lactose operon of Escherichia coli. J Mol Biol. 1971 May 28;58(1):1–28. doi: 10.1016/0022-2836(71)90229-4. [DOI] [PubMed] [Google Scholar]
  12. Müller-Hill B., Crapo L., Gilbert W. Mutants that make more lac repressor. Proc Natl Acad Sci U S A. 1968 Apr;59(4):1259–1264. doi: 10.1073/pnas.59.4.1259. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. NAGATA T. The molecular synchrony and sequential replication of DNA in Escherichia coli. Proc Natl Acad Sci U S A. 1963 Apr;49:551–559. doi: 10.1073/pnas.49.4.551. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Reznikoff W. S., Miller J. H., Scaife J. G., Beckwith J. R. A mechanism for repressor action. J Mol Biol. 1969 Jul 14;43(1):201–213. doi: 10.1016/0022-2836(69)90089-8. [DOI] [PubMed] [Google Scholar]
  15. Riggs A. D., Suzuki H., Bourgeois S. Lac repressor-operator interaction. I. Equilibrium studies. J Mol Biol. 1970 Feb 28;48(1):67–83. doi: 10.1016/0022-2836(70)90219-6. [DOI] [PubMed] [Google Scholar]
  16. Rose J. K., Yanofsky C. Metabolic regulation of the tryptophan operon of Escherichia coli: repressor-independent regulation of transcription initiation frequency. J Mol Biol. 1972 Aug 14;69(1):103–118. doi: 10.1016/0022-2836(72)90026-5. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES