Abstract
2,4-Dinitrophenol, dicoumarol, carbonylcyanide, m-chlorophenyl-hydrazone and pentachlorophenol all depressed aerobic molar growth yields of Streptococcus agalactiae to values equal to, or less than, those supported by substrate level phosphorylation. When the only source of energy was from substrate phosphorylation (anaerobic growth conditions), there was also a severe depression of the molar growth yield by the same four uncoupling agents. These results indicate that the effect of these agents is to uncouple both substrate and oxidative phosphorylation in S. agalactiae. Amytal inhibited glucose utilization, reduced the amount of O2 used per mole of substrate and reduced the molar cell yield to that supported by substrate phosphorylation. Atebrin inhibited the respiration rate, but final O2 consumed per mole of substrate was unchanged, and the respiration was coupled to biosynthesis. Rotenone had no effect on respiration, substrate utilization, or on molar growth yields.
Full text
PDF







Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BAUCHOP T., ELSDEN S. R. The growth of micro-organisms in relation to their energy supply. J Gen Microbiol. 1960 Dec;23:457–469. doi: 10.1099/00221287-23-3-457. [DOI] [PubMed] [Google Scholar]
- Bielawski J., Thompson T. E., Lehninger A. L. The effect of 2,4-dinitrophenol on the electrical resistance of phospholipid bilayer membranes. Biochem Biophys Res Commun. 1966 Sep 22;24(6):948–954. doi: 10.1016/0006-291x(66)90342-1. [DOI] [PubMed] [Google Scholar]
- DOLIN M. I. The Streptococcus faecalis oxidases for reduced diphosphopyridine nucleotide. III. Isolation and properties of a flavin peroxidase for reduced diphosphopyridine nucleotide. J Biol Chem. 1957 Mar;225(1):557–573. [PubMed] [Google Scholar]
- DOLIN M. I. The oxidation and per-oxidation of DPNH2 in extracts of Streptococcus faecalis, 10C1. Arch Biochem Biophys. 1953 Oct;46(2):483–485. doi: 10.1016/0003-9861(53)90221-5. [DOI] [PubMed] [Google Scholar]
- Galeotti T., Kovác L., Hess B. Interference of uncoupling agents with cellular energy-requiring processes in anaerobic conditions. Nature. 1968 Apr 13;218(5137):194–196. doi: 10.1038/218194a0. [DOI] [PubMed] [Google Scholar]
- Harold F. M. Conservation and transformation of energy by bacterial membranes. Bacteriol Rev. 1972 Jun;36(2):172–230. doi: 10.1128/br.36.2.172-230.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ishaque M., Donawa A., Aleem M. I. Electron transport and coupled energy generation in Pseudomonas saccharophila. Can J Biochem. 1971 Nov;49(11):1175–1182. doi: 10.1139/o71-169. [DOI] [PubMed] [Google Scholar]
- Jarett L., Hendler R. W. 2,4-Dinitrophenol and azide as inhibitors of protein and ribonucleic acid synthesis in anaerobic yeast. Biochemistry. 1967 Jun;6(6):1693–1703. doi: 10.1021/bi00858a018. [DOI] [PubMed] [Google Scholar]
- Kormancíkov'A V., Kovác L., Vidová M. Oxidative phosphorylation in yeast. V. Phosphorylation efficiencies in growing cells determined from molar growth yields. Biochim Biophys Acta. 1969 May;180(1):9–17. doi: 10.1016/0005-2728(69)90188-1. [DOI] [PubMed] [Google Scholar]
- Kovác L., Kuzela S. Effect of uncoupling agents and azide on the synthesis of beta-galactosidase in aerobically and anaerobically grown Escherichia coli. Biochim Biophys Acta. 1966 Oct 31;127(2):355–365. [PubMed] [Google Scholar]
- MITCHELL P. Coupling of phosphorylation to electron and hydrogen transfer by a chemi-osmotic type of mechanism. Nature. 1961 Jul 8;191:144–148. doi: 10.1038/191144a0. [DOI] [PubMed] [Google Scholar]
- Mickelson M. N. Aerobic metabolism of Streptococcus agalactiae. J Bacteriol. 1967 Jul;94(1):184–191. doi: 10.1128/jb.94.1.184-191.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mickelson M. N. Glucose degradation, molar growth yields, and evidence for oxidative phosphorylation in Streptococcus agalactiae. J Bacteriol. 1972 Jan;109(1):96–105. doi: 10.1128/jb.109.1.96-105.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mickelson M. N. Phosphorylation and the reduced nicotinamide adenine dinucleotide oxidase reaction in Streptococcus agalactiae. J Bacteriol. 1969 Nov;100(2):895–901. doi: 10.1128/jb.100.2.895-901.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
- STADTMAN E. R., NOVELLI G. D., LIPMANN F. Coenzyme A function in and acetyl transfer by the phosphotransacetylase system. J Biol Chem. 1951 Jul;191(1):365–376. [PubMed] [Google Scholar]
- Stouthamer A. H., Bettenhaussen C. Utilization of energy for growth and maintenance in continuous and batch cultures of microorganisms. A reevaluation of the method for the determination of ATP production by measuring molar growth yields. Biochim Biophys Acta. 1973 Feb 12;301(1):53–70. doi: 10.1016/0304-4173(73)90012-8. [DOI] [PubMed] [Google Scholar]
- van Dam K., Slater E. C. A suggested mechanism of uncoupling of respiratory-chain phosphorylation. Proc Natl Acad Sci U S A. 1967 Nov;58(5):2015–2019. doi: 10.1073/pnas.58.5.2015. [DOI] [PMC free article] [PubMed] [Google Scholar]