Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1974 Nov;120(2):980–983. doi: 10.1128/jb.120.2.980-983.1974

Effect of Cyclic Guanosine 3′,5′-Monophosphate on the Synthesis of Enzymes Sensitive to Catabolite Repression in Intact Cells of Escherichia coli

Michael Artman 1, Seymour Werthamer 1
PMCID: PMC245867  PMID: 4376146

Abstract

Cyclic guanosine 3′,5′-monophosphate inhibits the synthesis of β-galactosidase and tryptophanase in cultures of Escherichia coli growing in minimal media with glucose or glycerol as the carbon source. Cyclic guanosine 3′,5′-monophosphate acts at the transcriptional level in the lac operon, it exerts its action at the promoter site of the operon, and requires the presence of functional cyclic adenosine 3′,5′-monophosphate receptor protein.

Full text

PDF
980

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Artman M., Ennis H. L. Dissociation of Lac messenger ribonucleic acid transcription from translation during recovery from inhibition of protein synthesis. J Bacteriol. 1972 May;110(2):652–660. doi: 10.1128/jb.110.2.652-660.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Artman M., Werthamer S., Gelb P. Catabolie repression in inhibition of beta-galactosidase synthesis by Escherichia coli in the presence of agents producing translation errors. Antimicrob Agents Chemother. 1972 Dec;2(6):449–455. doi: 10.1128/aac.2.6.449. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bilezikian J. P., Kaempfer R. O., Magasanik B. Mechanism of tryptophanase induction in Escherichia coli. J Mol Biol. 1967 Aug 14;27(3):495–506. doi: 10.1016/0022-2836(67)90054-x. [DOI] [PubMed] [Google Scholar]
  4. Buettner M. J., Spitz E., Rickenberg H. V. Cyclic adenosine 3',5'-monophosphate in Escherichia coli. J Bacteriol. 1973 Jun;114(3):1068–1073. doi: 10.1128/jb.114.3.1068-1073.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. De Crombrugghe B., Perlman R. L., Varmus H. E., Pastan I. Regulation of inducible enzyme synthesis in Escherichia coli by cyclic adenosine 3', 5'-monophosphate. J Biol Chem. 1969 Nov 10;244(21):5828–5835. [PubMed] [Google Scholar]
  6. Emmer M., deCrombrugghe B., Pastan I., Perlman R. Cyclic AMP receptor protein of E. coli: its role in the synthesis of inducible enzymes. Proc Natl Acad Sci U S A. 1970 Jun;66(2):480–487. doi: 10.1073/pnas.66.2.480. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Eron L., Arditti R., Zubay G., Connaway S., Beckwith J. R. An adenosine 3':5'-cyclic monophosphate-binding protein that acts on the transcription process. Proc Natl Acad Sci U S A. 1971 Jan;68(1):215–218. doi: 10.1073/pnas.68.1.215. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Eron L., Block R. Mechanism of initiation and repression of in vitro transcription of the lac operon of Escherichia coli. Proc Natl Acad Sci U S A. 1971 Aug;68(8):1828–1832. doi: 10.1073/pnas.68.8.1828. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Fry M., Artman M. Deoxyribonucleic acid-ribonucleic acid hybridization. Annealing and quantitative recovery of intact ribosomal ribonucleic acid molecules from hybrids. Biochem J. 1969 Nov;115(2):287–294. doi: 10.1042/bj1150287. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Fry M., Artman M. Studies of newly synthesized ribosomal ribonucleic acid of Escherichia coli. Biochem J. 1969 Nov;115(2):295–305. doi: 10.1042/bj1150295. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Goldberg N. D., O'Dea R. F., Haddox M. K. Cyclic GMP. Adv Cyclic Nucleotide Res. 1973;3:155–223. [PubMed] [Google Scholar]
  12. Hardman J. G., Robison G. A., Sutherland E. W. Cyclic nucleotides. Annu Rev Physiol. 1971;33:311–336. doi: 10.1146/annurev.ph.33.030171.001523. [DOI] [PubMed] [Google Scholar]
  13. Nisseley S. P., Anderson W. B., Gottesman M. E., Perlman R. L., Pastan I. In vitro transcription of the gal operon requires cyclic adenosine monophosphate and cyclic adenosine monophosphate receptor protein. J Biol Chem. 1971 Aug 10;246(15):4671–4678. [PubMed] [Google Scholar]
  14. Pastan I., Perlman R. L. Stimulation of tryptophanase synthesis in Escherichia coli by cyclic 3',5'-adenosine monophosphate. J Biol Chem. 1969 Apr 25;244(8):2226–2232. [PubMed] [Google Scholar]
  15. Pastan I., Perlman R. Cyclic adenosine monophosphate in bacteria. Science. 1970 Jul 24;169(3943):339–344. doi: 10.1126/science.169.3943.339. [DOI] [PubMed] [Google Scholar]
  16. Perlman R. L., Pastan I. Regulation of beta-galactosidase synthesis in Escherichia coli by cyclic adenosine 3',5'-monophosphate. J Biol Chem. 1968 Oct 25;243(20):5420–5427. [PubMed] [Google Scholar]
  17. Ramírez J. M., Conde F., Del Campo F. F. Transcriptional control of tryptophanase synthesis by cyclic AMP in Escherichia coli. Eur J Biochem. 1972 Feb;25(3):471–475. doi: 10.1111/j.1432-1033.1972.tb01717.x. [DOI] [PubMed] [Google Scholar]
  18. Silverstone A. E., Arditti R. R., Magasanik B. Catabolite-insensitive revertants of lac promoter mutants. Proc Natl Acad Sci U S A. 1970 Jul;66(3):773–779. doi: 10.1073/pnas.66.3.773. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Zubay G., Schwartz D., Beckwith J. Mechanism of activation of catabolite-sensitive genes: a positive control system. Proc Natl Acad Sci U S A. 1970 May;66(1):104–110. doi: 10.1073/pnas.66.1.104. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES