Abstract
The regulation of serine transhydroxymethylase (EC 2.1.2.1.; l-serine:tetrahydrofolic-5,10-hydroxymethyltransferase) has been investigated in Salmonella typhimurium LT2. Our results indicate that limitation of a methionine auxotroph for methionine does not cause derepression of this enzyme as reported for Escherichia coli. However, a sixfold decrease in specific activity was observed when S. typhimurium cells were grown in glucose minimal medium supplemented with serine, glycine, methionine, adenine, guanine, and thymine. None of these compounds added to the growth medium individually produced more than a 42% reduction of wild-type enzyme activity. This enhanced repression by the combination of compounds suggests a form of cumulative repression of this enzyme. Growth of serine and thymine auxotrophs, with the respective requirement of each limiting, did not result in increased enzyme activity. However, growth of a purine auxotroph with a limiting amount of either guanine or inosine resulted in a five- to sevenfold increase in enzyme activity. A second condition causing significant derepression (fourfold increase) above the levels observed with cells grown in minimal medium was the addition of 0.5 μg of trimethoprim per ml, an inhibitor of the dihydrofolate reductase activity. (A partial report on this work was presented at 1974 meeting of the American Society for Microbiology.)
Full text
PDF








Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Berberich M. A., Kovach J. S., Goldberger R. F. Chain initiation in a polycistronic message: sequential versus simultaneous derepression of the enzymes for histidine biosynthesis in Salmonella typhimurium. Proc Natl Acad Sci U S A. 1967 Jun;57(6):1857–1864. doi: 10.1073/pnas.57.6.1857. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brenchley J. E. Effect of methionine sulfoximine and methionine sulfone on glutamate synthesis in Klebsiella aerogenes. J Bacteriol. 1973 May;114(2):666–673. doi: 10.1128/jb.114.2.666-673.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dalal F. R., Gots J. S. Purification of 5,10-methylenetetrahydrofolate dehydrogenase from Salmonella typhimurium and its inhibition by purine nucleotides. J Biol Chem. 1967 Aug 25;242(16):3636–3640. [PubMed] [Google Scholar]
- FLAVIN M. Microbial transsulfuration: the mechanism of an enzymatic disulfide elimination reaction. J Biol Chem. 1962 Mar;237:768–777. [PubMed] [Google Scholar]
- Folk W. R., Berg P. Isolation and partial characterization of Escherichia coli mutants with altered glycyl transfer ribonucleic acid synthetases. J Bacteriol. 1970 Apr;102(1):193–203. doi: 10.1128/jb.102.1.193-203.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- MELTZER H. L., SPRINSON D. B. The synthesis of 4-C14, N15-L-threonine and a study of its metabolism. J Biol Chem. 1952 May;197(1):461–474. [PubMed] [Google Scholar]
- Mansouri A., Decter J. B., Silber R. Studies on the regulation of one-carbon metabolism. II. Repression-derepression of serine hydroxymethyltransferase by methionine in Escherichia coli 113-3. J Biol Chem. 1972 Jan 25;247(2):348–352. [PubMed] [Google Scholar]
- Miller B. A., Newman E. B. Control of serine transhydroxymethylase synthesis in Escherichia coli K12. Can J Microbiol. 1974 Jan;20(1):41–47. doi: 10.1139/m74-007. [DOI] [PubMed] [Google Scholar]
- Miller D. A., Simmonds S. THE METABOLISM OF L-THREONINE AND GLYCINE BY Escherichia coli. Proc Natl Acad Sci U S A. 1957 Feb 15;43(2):195–199. doi: 10.1073/pnas.43.2.195. [DOI] [PMC free article] [PubMed] [Google Scholar]
- PIZER L. I. ENZYMOLOGY AND REGULATION OF SERINE BIOSYNTHESIS IN CULTURED HUMAN CELLS. J Biol Chem. 1964 Dec;239:4219–4226. [PubMed] [Google Scholar]
- PIZER L. I. GLYCINE SYNTHESIS AND METABOLISM IN ESCHERICHIA COLI. J Bacteriol. 1965 Apr;89:1145–1150. doi: 10.1128/jb.89.4.1145-1150.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
- PIZER L. I. THE PATHWAY AND CONTROL OF SERINE BIOSYNTHESIS IN ESCHERICHIA COLI. J Biol Chem. 1963 Dec;238:3934–3944. [PubMed] [Google Scholar]
- Silber R., Mansouri A. Regulation of folate-dependent enzymes. Ann N Y Acad Sci. 1971 Nov 30;186:55–69. doi: 10.1111/j.1749-6632.1971.tb46955.x. [DOI] [PubMed] [Google Scholar]
- Stauffer G. V., Brenchley J. E. Evidence for the involvement of serine transhydroxymethylase in serine and glycine interconversions in Salmonella typhimurium. Genetics. 1974 Jun;77(2):185–198. doi: 10.1093/genetics/77.2.185. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Taylor R. T., Dickerman H., Weissbach H. Control of one-carbon metabolism in a methionine-B12 auxotroph of Escherichia coli. Arch Biochem Biophys. 1966 Nov;117(2):405–412. doi: 10.1016/0003-9861(66)90429-2. [DOI] [PubMed] [Google Scholar]
- UMBARGER H. E., UMBARGER M. A., SIU P. M. BIOSYNTHESIS OF SERINE IN ESCHERICHIA COLI AND SALMONELLA TYPHIMURIUM. J Bacteriol. 1963 Jun;85:1431–1439. doi: 10.1128/jb.85.6.1431-1439.1963. [DOI] [PMC free article] [PubMed] [Google Scholar]
- UMBARGER H. E., UMBARGER M. A. The biosynthetic pathway of serine in salmonella typhimurium. Biochim Biophys Acta. 1962 Jul 30;62:193–195. doi: 10.1016/0006-3002(62)90515-2. [DOI] [PubMed] [Google Scholar]