Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1974 Dec;120(3):1133–1143. doi: 10.1128/jb.120.3.1133-1143.1974

Purification and Characterization of the Nocardial Acetylesterase Involved in 2-Butanone Degradation

Elizabeth F Eubanks a,1, F W Forney a,2, A D Larson a
PMCID: PMC245892  PMID: 4436255

Abstract

An inducible acetylesterase (EC 3.1.1.6) that hydrolyzes ethyl acetate, an intermediate in the degradation of 2-butanone by Nocardia strain LSU-169, was purified. The polypeptide molecular weight as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis was 39,500, and the enzyme molecular weight determined by sucrose density gradient centrifugation was 84,000. The purified enzyme demonstrated aggregation in polyacrylamide gels. The esterase hydrolyzed p-nitrophenyl acetate, ethyl acetate, and methyl acetate; however, enzymatic hydrolysis of phosphates, sulfates, dipeptides, lactones, or the ethyl esters of N-benzoyl-l-tyrosine could not be detected. The apparent Km for esterase activity with p-nitrophenyl acetate as the substrate was 6.7 × 10−5 M, and the maximal velocity (V) was 1,223 μmol/min per mg of protein at 30 C. With ethyl acetate as the substrate, the apparent Km was 3.6 × 10−4 M and V was 1,026 μmol/min per mg of protein. No significant inhibition of esterase activity was obtained with organophosphates, mercuric compounds, eserine sulfate, sodium arsanilate, NaF, CaCl2, CoCl2, or MnCl2. At concentrations from 7 × 10−4 to 4 × 10−3 M, 2-butanol and primary alcohols with chain lengths of four or more carbons inhibited esterase activity from 59 to 86%. Linear noncompetitive inhibition of esterase activity by 3-methyl-1-butanol with a Ki of 1.0 × 10−3 M was demonstrated.

Full text

PDF
1133

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allen J. E., Forney F. W., Markovetz A. J. Microbial subterminal oxidation of alkanes and alk-1-enes. Lipids. 1971 Jul;6(7):448–452. doi: 10.1007/BF02531227. [DOI] [PubMed] [Google Scholar]
  2. Barker D. L., Jencks W. P. Pig liver esterase. Physical properties. Biochemistry. 1969 Oct;8(10):3879–3889. doi: 10.1021/bi00838a001. [DOI] [PubMed] [Google Scholar]
  3. CLELAND W. W. The kinetics of enzyme-catalyzed reactions with two or more substrates or products. II. Inhibition: nomenclature and theory. Biochim Biophys Acta. 1963 Feb 12;67:173–187. doi: 10.1016/0006-3002(63)91815-8. [DOI] [PubMed] [Google Scholar]
  4. DAVIS B. J. DISC ELECTROPHORESIS. II. METHOD AND APPLICATION TO HUMAN SERUM PROTEINS. Ann N Y Acad Sci. 1964 Dec 28;121:404–427. doi: 10.1111/j.1749-6632.1964.tb14213.x. [DOI] [PubMed] [Google Scholar]
  5. DWORKIN M., FOSTER J. W. Experiments with some microorganisms which utilize ethane and hydrogen. J Bacteriol. 1958 May;75(5):592–603. doi: 10.1128/jb.75.5.592-603.1958. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Ecobichon D. J. Cytoplasmic carboxylesterases of human and domestic animal liver: aggregation, dissociation, and molecular weight estimation. Can J Biochem. 1972 Jan;50(1):9–15. doi: 10.1139/o72-002. [DOI] [PubMed] [Google Scholar]
  7. Forney F. W., Markovetz A. J. An enzyme system for aliphatic methyl ketone oxidation. Biochem Biophys Res Commun. 1969 Sep 24;37(1):31–38. doi: 10.1016/0006-291x(69)90876-6. [DOI] [PubMed] [Google Scholar]
  8. Forney F. W., Markovetz A. J., Kallio R. E. Bacterial oxidation of 2-tridecanone to 1-undecanol. J Bacteriol. 1967 Feb;93(2):649–655. doi: 10.1128/jb.93.2.649-655.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Forney F. W., Markovetz A. J. Oxidative degradation of methyl ketones. II. Chemical pathway for degradation of 2-tridecanone by Pseudomonas multivorans and Pseudomonas aeruginosa. J Bacteriol. 1968 Oct;96(4):1055–1064. doi: 10.1128/jb.96.4.1055-1064.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Forney F. W., Markovetz A. J. The biology of methyl ketones. J Lipid Res. 1971 Jul;12(4):383–395. [PubMed] [Google Scholar]
  11. Griffin M., Trudgill P. W. The metabolism of cyclopentanol by Pseudomonas N.C.I.B. 9872. Biochem J. 1972 Sep;129(3):595–603. doi: 10.1042/bj1290595. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Higerd T. B., Spizizen J. Isolation of two acetyl esterases from extracts of Bacillus subtilis. J Bacteriol. 1973 Jun;114(3):1184–1192. doi: 10.1128/jb.114.3.1184-1192.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Holmes R. S., Masters C. J. The developmental multiplicity and isoenzyme status of cavian esterases. Biochim Biophys Acta. 1967 Mar 15;132(2):379–399. doi: 10.1016/0005-2744(67)90157-x. [DOI] [PubMed] [Google Scholar]
  14. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  15. MARTIN R. G., AMES B. N. A method for determining the sedimentation behavior of enzymes: application to protein mixtures. J Biol Chem. 1961 May;236:1372–1379. [PubMed] [Google Scholar]
  16. Norris D. B., Trudgill P. W. The metabolism of cyclohexanol by Nocardia globerula CL1. Biochem J. 1971 Feb;121(3):363–370. doi: 10.1042/bj1210363. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. RAYMOND S. ACRYLAMIDE GEL ELECTROPHORESIS. Ann N Y Acad Sci. 1964 Dec 28;121:350–365. doi: 10.1111/j.1749-6632.1964.tb14208.x. [DOI] [PubMed] [Google Scholar]
  18. Shum A. C., Markovetz A. J. Purification and properties of undecyl acetate esterase from Pseudomonas cepacia grown on 2-tridecanone. J Bacteriol. 1974 Jun;118(3):880–889. doi: 10.1128/jb.118.3.880-889.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Shum A. C., Markovetz A. J. Specificity and induction of undecyl acetate esterase from Pseudomonas cepacia grown on 2-tridecanone. J Bacteriol. 1974 Jun;118(3):890–897. doi: 10.1128/jb.118.3.890-897.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Weber K., Osborn M. The reliability of molecular weight determinations by dodecyl sulfate-polyacrylamide gel electrophoresis. J Biol Chem. 1969 Aug 25;244(16):4406–4412. [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES