Abstract
Deoxyribonucleic acid (DNA) of Bacillus subtilis var. amylosacchariticus showed almost the same ability as B. subtilis Marburg to induce transfer of several genetic markers in DNA-mediated transformation. DNA-DNA hybridization data also showed an intimate relationship between the two strains. Genetic elements involved in the production of extracellular α-amylase (EC 3.2.1.1.) in B. subtilis var. amylosacchariticus were studied by using DNA-mediated transformation. Two Marburg derivatives, NA20(amyR2) and NA20-22(amyR1), produced about 50 and 10 U of α-amylase per mg of cells, respectively, whereas B. subtilis var. amylosacchariticus produced as much as 150 U of the enzyme per mg of cells. When B. subtilis var. amylosacchariticus was crossed with strain NA20-22 as recipient, transformants that acquired high α-amylase productivity (about 50 U/mg of cells) were obtained. Genetic analysis revealed that a regulator gene (amyR) for α-amylase synthesis was found in B. subtilis var. amylosacchariticus, as in the case of B. natto 1212 (amyR2) and B. subtilis Marburg (amyR1). The allele was designated amyR3; it is phenotypically indistinguishable from amyR2, but is readily distinguishable from amyR1. The presence of amyR3 was not sufficient for an organism to render production of an exceptional amount of α-amylase. Extra-high α-amylase producers could be obtained by crossing B. subtilis var. amylosacchariticus as donor with strain NA20 as recipient. The transformants produced the same or even greater amounts of the enzyme than the donor strain. Results suggest the presence of another gene that is involved in the production of the exceptional amount of α-amylase.
Full text
PDF






Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Gillespie D., Spiegelman S. A quantitative assay for DNA-RNA hybrids with DNA immobilized on a membrane. J Mol Biol. 1965 Jul;12(3):829–842. doi: 10.1016/s0022-2836(65)80331-x. [DOI] [PubMed] [Google Scholar]
- SAITO H., MIURA K. I. PREPARATION OF TRANSFORMING DEOXYRIBONUCLEIC ACID BY PHENOL TREATMENT. Biochim Biophys Acta. 1963 Aug 20;72:619–629. [PubMed] [Google Scholar]
- Uehara H., Yoneda Y., Yamane K., Maruo B. Regulation of neutral protease productivity in Bacillus subtilis: transformation of high protease productivity. J Bacteriol. 1974 Jul;119(1):82–91. doi: 10.1128/jb.119.1.82-91.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Warmaar S. O., Cohen J. A. A quantitative assay for DNA-DNA hybrids using membrane filters. Biochem Biophys Res Commun. 1966 Aug 23;24(4):554–558. doi: 10.1016/0006-291x(66)90356-1. [DOI] [PubMed] [Google Scholar]
- Welker N. E., Campbell L. L. Unrelatedness of Bacillus amyloliquefaciens and Bacillus subtilis. J Bacteriol. 1967 Oct;94(4):1124–1130. doi: 10.1128/jb.94.4.1124-1130.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yamaguchi K., Nagata Y., Maruo B. Genetic control of the rate of alpha-amylase synthesis in Bacillus subtilis. J Bacteriol. 1974 Aug;119(2):410–415. doi: 10.1128/jb.119.2.410-415.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yamaguchi K., Nagata Y., Maruo B. Isolation of mutants defective in alpha-amylase from Bacillus subtilis: genetic analyses. J Bacteriol. 1974 Aug;119(2):416–424. doi: 10.1128/jb.119.2.416-424.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yoneda Y., Yamane K., Maruo B. Membrane mutation related to the production of extracellular -amylase and protease in bacillus subtilis. Biochem Biophys Res Commun. 1973 Feb 5;50(3):765–770. doi: 10.1016/0006-291x(73)91310-7. [DOI] [PubMed] [Google Scholar]
- Yuki S. On the gene controlling the rate of amylase production in Bacillus subtilis. Biochem Biophys Res Commun. 1968 Apr 19;31(2):182–187. doi: 10.1016/0006-291x(68)90727-4. [DOI] [PubMed] [Google Scholar]