Abstract
Estimates of average rates of stalk formation over several generations of growth in Caulobacter crescentus showed that long-stalked Sk1 mutant and phosphate-starved wild-type cultures produce stalk material at about twice the rate of wild-type C. crescentus grown with adequate nutrients. Thus, the long stalks of Sk1 or phosphate-starved caulobacters are not merely a function of their longer doubling times. Inhibition of cell division of Sk1 418 with mitomycin C (MC) caused production of cellular filaments and resulted in inhibition of stalk formation. There was no appreciable decrease in total cell mass or in rates of ribonucleic acid and protein synthesis in the MC-treated cultures as compared with controls, but stalk formation, which is normally dependent on these processes, was severely retarded. Average stalk lengths in MC-treated Sk1 cultures were 30% of those found in control cultures. MC-produced cellular filaments were also subjected to deoxyribonucleic acid analysis and ultrastructural examination. The deoxyribonucleic acid content of MC-treated bacteria was about 50 to 60% that of untreated bacteria. Hydroxyurea also was found to produce some cellular filaments and shorter stalks, but with accompanying decreases in growth rate and yield.
Full text
PDF







Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BRADLEY D. E. A study of the negative staining process. J Gen Microbiol. 1962 Nov;29:503–516. doi: 10.1099/00221287-29-3-503. [DOI] [PubMed] [Google Scholar]
- BURTON K. A study of the conditions and mechanism of the diphenylamine reaction for the colorimetric estimation of deoxyribonucleic acid. Biochem J. 1956 Feb;62(2):315–323. doi: 10.1042/bj0620315. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Degnen S. T., Newton A. Chromosome replication during development in Caulobacter crescentus. J Mol Biol. 1972 Mar 14;64(3):671–680. doi: 10.1016/0022-2836(72)90090-3. [DOI] [PubMed] [Google Scholar]
- Degnen S. T., Newton A. Dependence of cell division on the completion of chromosome replication in Caulobacter. J Bacteriol. 1972 Jun;110(3):852–856. doi: 10.1128/jb.110.3.852-856.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kantor G. J., Deering R. A. Effect of nalidixic acid and hydroxyurea on division ability of Escherichia coli fil+ and lon- strains. J Bacteriol. 1968 Feb;95(2):520–530. doi: 10.1128/jb.95.2.520-530.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Newton A. Role of transcription in the temporal control of development in Caulobacter crescentus (stalk-rifampin-RNA synthesis-DNA synthesis-motility). Proc Natl Acad Sci U S A. 1972 Feb;69(2):447–451. doi: 10.1073/pnas.69.2.447. [DOI] [PMC free article] [PubMed] [Google Scholar]
- POINDEXTER J. S. BIOLOGICAL PROPERTIES AND CLASSIFICATION OF THE CAULOBACTER GROUP. Bacteriol Rev. 1964 Sep;28:231–295. doi: 10.1128/br.28.3.231-295.1964. [DOI] [PMC free article] [PubMed] [Google Scholar]
- RYTER A., KELLENBERGER E., BIRCHANDERSEN A., MAALOE O. Etude au microscope électronique de plasmas contenant de l'acide désoxyribonucliéique. I. Les nucléoides des bactéries en croissance active. Z Naturforsch B. 1958 Sep;13B(9):597–605. [PubMed] [Google Scholar]
- Schmidt J. M. Prosthecate bacteria. Annu Rev Microbiol. 1971;25:93–110. doi: 10.1146/annurev.mi.25.100171.000521. [DOI] [PubMed] [Google Scholar]
- Schmidt J. M., Samuelson G. M. Effects of cyclic nucleotides and nucleoside triphosphates on stalk formation in Caulobacter crescentus. J Bacteriol. 1972 Oct;112(1):593–601. doi: 10.1128/jb.112.1.593-601.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schmidt J. M., Stanier R. Y. The development of cellular stalks in bacteria. J Cell Biol. 1966 Mar;28(3):423–436. doi: 10.1083/jcb.28.3.423. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Staley J. T., Jordan T. L. Crossbands of Caulobacter crescentus stalks serve as indicators of cell age. Nature. 1973 Nov 16;246(5429):155–156. doi: 10.1038/246155a0. [DOI] [PubMed] [Google Scholar]
- Staley J. T. Prosthecomicrobium and Ancalomicrobium: new prosthecate freshwater bacteria. J Bacteriol. 1968 May;95(5):1921–1942. doi: 10.1128/jb.95.5.1921-1942.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]