Abstract
Adenosine 5'-monophosphate is dephosphorylated before its uptake by cells of Escherichia coli. This is demonstrated by using a radioactive double-labeled culture, and with a 5'-nucleotidase-deficient, mutant strain. The adenosine formed is further phosphorolyzed to adenine as a prerequisite for its uptake and incorporation. The cellular localization of the enzymes involved in the catabolism of adenosine 5'-monophosphate is discussed.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ahmad S. I., Pritchard R. H. A map of four genes specifying enzymes involved in catabolism of nucleosides and deoxynucleosides in Escherichia coli. Mol Gen Genet. 1969 Aug 15;104(4):351–359. doi: 10.1007/BF00334234. [DOI] [PubMed] [Google Scholar]
- Beacham I. R., Kahana R., Levy L., Yagil E. Mutants of Escherichia coli K-12 "cryptic," or deficient in 5'-nucleotidase (uridine diphosphate-sugar hydrolase) and 3'-nucleotidase (cyclic phosphodiesterase) activity. J Bacteriol. 1973 Nov;116(2):957–964. doi: 10.1128/jb.116.2.957-964.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Beacham I. R., Yagil E., Beacham K., Pritchard R. H. On the localisation of enzymes of deoxynucleoside catabolism in Escherichia coli. FEBS Lett. 1971 Aug 1;16(2):77–80. doi: 10.1016/0014-5793(71)80336-8. [DOI] [PubMed] [Google Scholar]
- Cerny G., Teuber M. Comparative polyacrylamide electrophoresis of periplasmic proteins released from gram-negative bacteria by polymyxin B. Arch Mikrobiol. 1972;82(4):361–370. doi: 10.1007/BF00424939. [DOI] [PubMed] [Google Scholar]
- Dietz G. W., Heppel L. A. Studies on the uptake of hexose phosphates. 3. Mechanism of uptake of glucose 1-phosphate in Escherichia coli. J Biol Chem. 1971 May 10;246(9):2891–2897. [PubMed] [Google Scholar]
- Doskocil J. Inducible nucleoside permease in Escherichia coli. Biochem Biophys Res Commun. 1974 Feb 27;56(4):997–1003. doi: 10.1016/s0006-291x(74)80287-1. [DOI] [PubMed] [Google Scholar]
- EGGLESTON L. V., KREBS H. A. Permeability of Escherichia coli to ribose and ribose nucleotides. Biochem J. 1959 Oct;73:264–270. doi: 10.1042/bj0730264. [DOI] [PMC free article] [PubMed] [Google Scholar]
- FRAENKEL D. G., FALCOZ-KELLY F., HORECKER B. L. THE UTILIZATION OF GLUCOSE 6-PHOSPHATE BY GLUCOKINASELESS AND WILD-TYPE STRAINS OF ESCHERICHIA COLI. Proc Natl Acad Sci U S A. 1964 Nov;52:1207–1213. doi: 10.1073/pnas.52.5.1207. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HAGIHIRA H., WILSON T. H., LIN E. C. STUDIES ON THE GLUCOSE-TRANSPORT SYSTEM IN ESCHERICHIA COLI WITH ALPHA-METHYLGLUCOSIDE AS SUBSTRATE. Biochim Biophys Acta. 1963 Nov 15;78:505–515. doi: 10.1016/0006-3002(63)90912-0. [DOI] [PubMed] [Google Scholar]
- HAYASHI S., KOCH J. P., LIN E. C. ACTIVE TRANSPORT OF L-ALPHA-GLYCEROPHOSPHATE IN ESCHERICHIA COLI. J Biol Chem. 1964 Sep;239:3098–3105. [PubMed] [Google Scholar]
- Hochstadt-Ozer J., Stadtman E. R. The regulation of purine utilization in bacteria. II. Adenine phosphoribosyltransferase in isolated membrane preparations and its role in transport of adenine across the membrane. J Biol Chem. 1971 Sep 10;246(17):5304–5311. [PubMed] [Google Scholar]
- Hochstadt-Ozer J., Stadtman E. R. The regulation of purine utilization in bacteria. III. The involvement of purine phosphoribosyltransferases in the uptake of adenine and other nucleic acid precursors by intact resting cells. J Biol Chem. 1971 Sep 10;246(17):5312–5320. [PubMed] [Google Scholar]
- Hochstadt-Ozer J. The regulation of purine utilization in bacteria. IV. Roles of membrane-localized and pericytoplasmic enzymes in the mechanism of purine nucleoside transport across isolated Escherichia coli membranes. J Biol Chem. 1972 Apr 25;247(8):2419–2426. [PubMed] [Google Scholar]
- Hoffmeyer J., Neuhard J. Metabolism of exogenous purine bases and nucleosides by Salmonella typhimurium. J Bacteriol. 1971 Apr;106(1):14–24. doi: 10.1128/jb.106.1.14-24.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Komatsu Y., Tanaka K. A showdomycin-resistant mutant of Escherichia coli K-12 with altered nucleoside transport character. Biochim Biophys Acta. 1972 Nov 2;288(2):390–403. doi: 10.1016/0005-2736(72)90260-x. [DOI] [PubMed] [Google Scholar]
- LICHTENSTEIN J., BARNER H. D., COHEN S. S. The metabolism of exogenously supplied nucleotides by Escherichia coli. J Biol Chem. 1960 Feb;235:457–465. [PubMed] [Google Scholar]
- Lin E. C. The genetics of bacterial transport systems. Annu Rev Genet. 1970;4:225–262. doi: 10.1146/annurev.ge.04.120170.001301. [DOI] [PubMed] [Google Scholar]
- Munch-Petersen A. On the catabolism of deoxyribonucleosides in cells and cell extracts of Escherichia coli. Eur J Biochem. 1968 Nov;6(3):432–442. doi: 10.1111/j.1432-1033.1968.tb00465.x. [DOI] [PubMed] [Google Scholar]
- PRITCHARD R. H., LARK K. G. INDUCTION OF REPLICATION BY THYMINE STARVATION AT THE CHROMOSOME ORIGIN IN ESCHERICHIA COLI. J Mol Biol. 1964 Aug;9:288–307. doi: 10.1016/s0022-2836(64)80208-4. [DOI] [PubMed] [Google Scholar]
- Peterson R. N., Boniface J., Koch A. L. Energy requirements, interactions and distinctions in the mechanisms for transport of various nucleosides in Escherichia coli. Biochim Biophys Acta. 1967 Sep 9;135(4):771–783. doi: 10.1016/0005-2736(67)90108-3. [DOI] [PubMed] [Google Scholar]
- Peterson R. N., Koch A. L. The relationship of adenosine and inosine transport in Escherichia coli. Biochim Biophys Acta. 1966 Sep 5;126(1):129–145. doi: 10.1016/0926-6585(66)90043-4. [DOI] [PubMed] [Google Scholar]
- Taketo A., Kuno S. Internal localization of nucleoside-catabolic enzymes in Escherichia coli. J Biochem. 1972 Dec;72(6):1557–1563. doi: 10.1093/oxfordjournals.jbchem.a130047. [DOI] [PubMed] [Google Scholar]
- Taylor A. L., Trotter C. D. Linkage map of Escherichia coli strain K-12. Bacteriol Rev. 1972 Dec;36(4):504–524. doi: 10.1128/br.36.4.504-524.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Winkler H. H. A hexose-phosphate transport system in Escherichia coli. Biochim Biophys Acta. 1966 Mar 28;117(1):231–240. doi: 10.1016/0304-4165(66)90170-x. [DOI] [PubMed] [Google Scholar]
- Yagil E., Rosner A. Phosphorolysis of 5-fluoro-2'-deoxyuridine in Escherichia coli and its inhibition by nucleosides. J Bacteriol. 1971 Nov;108(2):760–764. doi: 10.1128/jb.108.2.760-764.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]