Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1975 Feb;121(2):429–433. doi: 10.1128/jb.121.2.429-433.1975

Cellular content of ribonucleic acid and protein in Saccharomyces cerevisiae as a function of exponential growth rate: calculation of the apparent peptide chain elongation rate.

K W Boehlke, J D Friesen
PMCID: PMC245948  PMID: 1089627

Abstract

The average cellular content of ribonucleic acid and protein was determined in cultures of Saccharomyces cerevisiae growing exponentially at different rates in a variety of media. Estimations of the proportion of total cellular ribonucleic acid that is made up of ribosomal ribonucleic acid were used to calculate the average number of ribosomes per cell at the different growth rates. The fraction of ribosomes actively engaged in translation was estimated by sucrose gradient centrifugation of ribosomes and polysomes. These data were used in a calculation of the apparent time taken for the addition of an amino acid to the growing polypeptide chain; this value was found to vary linearly with growth rate over a fivefold range of doubling times.

Full text

PDF
429

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Attardi G. The mechanism of protein synthesis. Annu Rev Microbiol. 1967;21:383–416. doi: 10.1146/annurev.mi.21.100167.002123. [DOI] [PubMed] [Google Scholar]
  2. DISCHE Z. Qualitative and quantitative colorimetric determination of heptoses. J Biol Chem. 1953 Oct;204(2):983–997. [PubMed] [Google Scholar]
  3. EATON N. R. New press for disruption of microorganisms. J Bacteriol. 1962 Jun;83:1359–1360. doi: 10.1128/jb.83.6.1359-1360.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Geiduschek E. P., Haselkorn R. Messenger RNA. Annu Rev Biochem. 1969;38:647–676. doi: 10.1146/annurev.bi.38.070169.003243. [DOI] [PubMed] [Google Scholar]
  5. Hartwell L. H. Macromolecule synthesis in temperature-sensitive mutants of yeast. J Bacteriol. 1967 May;93(5):1662–1670. doi: 10.1128/jb.93.5.1662-1670.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Hartwell L. H., McLaughlin C. S. A mutant of yeast apparently defective in the initiation of protein synthesis. Proc Natl Acad Sci U S A. 1969 Feb;62(2):468–474. doi: 10.1073/pnas.62.2.468. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hutchison H. T., Hartwell L. H. Macromolecule synthesis in yeast spheroplasts. J Bacteriol. 1967 Nov;94(5):1697–1705. doi: 10.1128/jb.94.5.1697-1705.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  9. Lacroute F. RNA and protein elongation rates in Saccharomyces cerevisiae. Mol Gen Genet. 1973 Sep 27;125(4):319–327. doi: 10.1007/BF00276587. [DOI] [PubMed] [Google Scholar]
  10. Leick V. Growth rate dependency of protein and nucleic acid composition of Tetrahymena pyriformis and the control of synthesis of ribosomal and transfer RNA. C R Trav Lab Carlsberg. 1967;36(7):113–126. [PubMed] [Google Scholar]
  11. Moat A. G., Ahmad F., Alexander J. K., Barnes I. J. Alteration in the amino acid content of yeast during growth under various nutritional conditions. J Bacteriol. 1969 May;98(2):573–578. doi: 10.1128/jb.98.2.573-578.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. OHTAKA Y., UCHIDA K. THE CHEMICAL STRUCTURE AND STABILITY OF YEAST RIBOSOMES. Biochim Biophys Acta. 1963 Sep 17;76:94–104. [PubMed] [Google Scholar]
  13. OSAWA S. Preparation and some properties of a soluble ribonucleic acid from yeast. Biochim Biophys Acta. 1960 Sep 9;43:110–122. doi: 10.1016/0006-3002(60)90413-3. [DOI] [PubMed] [Google Scholar]
  14. Schweizer E., Halvorson H. O. On the regulation of ribosomal RNA synthesis in yeast. Exp Cell Res. 1969 Aug;56(2):239–244. doi: 10.1016/0014-4827(69)90008-1. [DOI] [PubMed] [Google Scholar]
  15. Sebastian J., Mian F., Halvorson H. O. Effect of the growth rate on the level of the DNA-dependent RNA polymerases in Saccharomyces cerevisiae. FEBS Lett. 1973 Aug 15;34(2):159–162. doi: 10.1016/0014-5793(73)80782-3. [DOI] [PubMed] [Google Scholar]
  16. Stanners C. P. Polyribosomes of hamster cells: transit time measurements. Biophys J. 1968 Feb;8(2):231–251. doi: 10.1016/S0006-3495(68)86487-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Wehr C. T., Parks L. W. Macromolecular synthesis in Saccharomyces cerevisiae in different growth media. J Bacteriol. 1969 May;98(2):458–466. doi: 10.1128/jb.98.2.458-466.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Williamson D. H. The timing of deoxyribonucleic acid synthesis in the cell cycle of Saccharomyces cerevisiae. J Cell Biol. 1965 Jun;25(3):517–528. doi: 10.1083/jcb.25.3.517. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES