Abstract
Mutants ton A and ton B of Escherichia coli K12, known to be resistant to bacteriophage phi80, were found to be insensitive as well to albomycin, an analogue of the specific siderochrome ferrichrome. Ferrichrome at micromolar concentrations strongly inhibited plaque production by phi80. Preincubation with ferrichrome did not inactivate the phage. At a concentration at which ferrichrome allowed 90% inhibition of plaque formation, the chromium analogue of ferrichrome showed no detectable activity. Similarly, ethylenediaminetetraacetic acid, ferrichrome A, and certain siderochromes structurally distinct from ferrichrome, such as ferrioxamine B, schizokinen, citrate, and enterobactin, did not show detectable inhibitory activity. However, rhodotorulic acid showed moderate activity. A host range mutant of phi80, phi80h, was also inhibited by ferrichrome, as was a hybrid of phage lambda possessing the host range of phi80. However, phage lambdacI- and a hybrid of phi80 possessing the host range of lambda were not affected by ferrichrome. Finally, ferrichrome and chromic deferriferrichrome were shown to inhibit adsorption of phi80 to sensitive cells, ferrichrome giving 50% inhibition of adsorption at a minimal concentration of 8 nM. It is suggested that a component of the ferrichrome uptake system may reside in the outer membrane of E. coli K12 and may also function as a component of the receptor site for bacteriophage phi80, and that ferrichrome inhibition of the phage represents a competition for this common site.
Full text
PDF![497](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1f7a/245958/288d5f033ff3/jbacter00332-0111.png)
![498](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1f7a/245958/927ef31a0096/jbacter00332-0112.png)
![499](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1f7a/245958/efb7615dd6bb/jbacter00332-0113.png)
![500](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1f7a/245958/6e9317509bbb/jbacter00332-0114.png)
![501](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1f7a/245958/118d5596192f/jbacter00332-0115.png)
![502](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1f7a/245958/da4f46226119/jbacter00332-0116.png)
![503](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1f7a/245958/26ade187f757/jbacter00332-0117.png)
Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Atkin C. L., Neilands J. B. Rhodotorulic acid, a diketopiperazine dihydroxamic acid with growth-factor activity. I. Isolation and characterization. Biochemistry. 1968 Oct;7(10):3734–3739. doi: 10.1021/bi00850a054. [DOI] [PubMed] [Google Scholar]
- Bayer M. E. Adsorption of bacteriophages to adhesions between wall and membrane of Escherichia coli. J Virol. 1968 Apr;2(4):346–356. doi: 10.1128/jvi.2.4.346-356.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Braun V., Schaller K., Wolff H. A common receptor protein for phage T5 and colicin M in the outer membrane of Escherichia coli B. Biochim Biophys Acta. 1973 Sep 27;323(1):87–97. doi: 10.1016/0005-2736(73)90433-1. [DOI] [PubMed] [Google Scholar]
- Corbin J. L., Bulen W. A. The isolation and identification of 2,3-dihydroxybenzoic acid and 2-N,6-N-di-92,3-dihydroxybenzoyl)-L-lysine formed by iron-deficient Azotobacter vinelandii. Biochemistry. 1969 Mar;8(3):757–762. doi: 10.1021/bi00831a002. [DOI] [PubMed] [Google Scholar]
- Cox G. B., Gibson F., Luke R. K., Newton N. A., O'Brien I. G., Rosenberg H. Mutations affecting iron transport in Escherichia coli. J Bacteriol. 1970 Oct;104(1):219–226. doi: 10.1128/jb.104.1.219-226.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Di Masi D. R., White J. C., Schnaitman C. A., Bradbeer C. Transport of vitamin B12 in Escherichia coli: common receptor sites for vitamin B12 and the E colicins on the outer membrane of the cell envelope. J Bacteriol. 1973 Aug;115(2):506–513. doi: 10.1128/jb.115.2.506-513.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
- FREDERICQ P. Acquisition de proprietes antibiotiques nouvelles par la souche E. coli V sous l'action des bacteriophages T.1, T.5 et T.7. Antonie Van Leeuwenhoek. 1951;17(2):102–106. doi: 10.1007/BF02062253. [DOI] [PubMed] [Google Scholar]
- Frost G. E., Rosenberg H. The inducible citrate-dependent iron transport system in Escherichia coli K12. Biochim Biophys Acta. 1973 Nov 30;330(1):90–101. doi: 10.1016/0005-2736(73)90287-3. [DOI] [PubMed] [Google Scholar]
- Guterman S. K. Colicin B: mode of action and inhibition by enterochelin. J Bacteriol. 1973 Jun;114(3):1217–1224. doi: 10.1128/jb.114.3.1217-1224.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Guterman S. K., Dann L. Excretion of enterochelin by exbA and exbB mutants of Escherichia coli. J Bacteriol. 1973 Jun;114(3):1225–1230. doi: 10.1128/jb.114.3.1225-1230.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Guterman S. K. Inhibition of colicin B by enterochelin. Biochem Biophys Res Commun. 1971 Sep;44(5):1149–1155. doi: 10.1016/s0006-291x(71)80206-1. [DOI] [PubMed] [Google Scholar]
- Kadner R. J., Liggins G. L. Transport of vitamin B12 in Escherichia coli: genetic studies. J Bacteriol. 1973 Aug;115(2):514–521. doi: 10.1128/jb.115.2.514-521.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Leong J., Neilands J. B., Raymond K. N. Coordination isomers of biological iron transport compounds. III. (1) Transport of lambda-cis-chromic desferriferrichrome by Ustilago sphaerogena. Biochem Biophys Res Commun. 1974 Oct 8;60(3):1066–1071. doi: 10.1016/0006-291x(74)90421-5. [DOI] [PubMed] [Google Scholar]
- Luckey M., Pollack J. R., Wayne R., Ames B. N., Neilands J. B. Iron uptake in Salmonella typhimurium: utilization of exogenous siderochromes as iron carriers. J Bacteriol. 1972 Sep;111(3):731–738. doi: 10.1128/jb.111.3.731-738.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
- MATSUSHIRO A. Specialized transduction of tryptophan markers in Escherichia coli K12 by bacteriophage phi-80. Virology. 1963 Apr;19:475–482. doi: 10.1016/0042-6822(63)90041-2. [DOI] [PubMed] [Google Scholar]
- Pollack J. R., Neilands J. B. Enterobactin, an iron transport compound from Salmonella typhimurium. Biochem Biophys Res Commun. 1970 Mar 12;38(5):989–992. doi: 10.1016/0006-291x(70)90819-3. [DOI] [PubMed] [Google Scholar]
- Taylor A. L., Trotter C. D. Linkage map of Escherichia coli strain K-12. Bacteriol Rev. 1972 Dec;36(4):504–524. doi: 10.1128/br.36.4.504-524.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wang C. C., Newton A. An additional step in the transport of iron defined by the tonB locus of Escherichia coli. J Biol Chem. 1971 Apr 10;246(7):2147–2151. [PubMed] [Google Scholar]
- Wang C. C., Newton A. Iron transport in Escherichia coli: relationship between chromium sensitivity and high iron requirement in mutants of Escherichia coli. J Bacteriol. 1969 Jun;98(3):1135–1141. doi: 10.1128/jb.98.3.1135-1141.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wang C. C., Newton A. Iron transport in Escherichia coli: roles of energy-dependent uptake and 2,3-dihydroxybenzoylserine. J Bacteriol. 1969 Jun;98(3):1142–1150. doi: 10.1128/jb.98.3.1142-1150.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]