Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1975 Mar;121(3):892–900. doi: 10.1128/jb.121.3.892-900.1975

Temperature-sensitive recA mutant of Escherichia coli K-12: deoxyribonucleic acid metabolism after ultraviolet irradiation.

J D Hall, P Howard-Flanders
PMCID: PMC246016  PMID: 1090607

Abstract

A mutant of Escherichia coli K-12 temperature sensitive for genetic recombination was investigated and found to carry a mutation that could be cotransduced with cysC and hence could be in the recA gene. To determine whether recA+ can complement this mutation, matings were carried out at 35 and 40 C between Hfr donors that transfer recA+ or recA1 early and recipients carrying wild-type or mutant alleles. It was found that recA+ but not recA1 complements this mutation in zygotic temporary partial diploids. The mutant allele was accordingly designated recA44. A transductant carrying recA44 behaved normally at low temperatures but more like recA- strains at high temperatures with respect to recombinant colony formation in Hfr matings, cell survival, and deoxyribonucleic acid (DNA) synthesis after ultraviolet irradiation, cellular DNA breakdown, and prophage induction when lysogenic for lambda. Alkaline sucrose sedimentation studies of DNA from recA44 cells showed that short DNA molecules synthesized immediately after ultraviolet irradiation increased in molecular weight during subsequent incubation at 32 C but not at 45 C. Hence, recA+ is required for this molecular weight increase. Cells exposed to ultraviolet light synthesized DNA that remained of low molecular weight during a 40-min incubation at 32 C. This material increased in molecular weight in recArut not in recA44 cells during subsequent incubation at 45 C. Thus, the availability of recA+ during the first 40 min at 32 C after irradiation did not obviate the need for recA+ in the subsequent phases of this post-replication repair process.

Full text

PDF
892

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bachmann B. J. Pedigrees of some mutant strains of Escherichia coli K-12. Bacteriol Rev. 1972 Dec;36(4):525–557. doi: 10.1128/br.36.4.525-557.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Brooks K., Clark A. J. Behavior of lambda bacteriophage in a recombination deficienct strain of Escherichia coli. J Virol. 1967 Apr;1(2):283–293. doi: 10.1128/jvi.1.2.283-293.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. CLARK A. J., MARGULIES A. D. ISOLATION AND CHARACTERIZATION OF RECOMBINATION-DEFICIENT MUTANTS OF ESCHERICHIA COLI K12. Proc Natl Acad Sci U S A. 1965 Feb;53:451–459. doi: 10.1073/pnas.53.2.451. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Clark A. J., Chamberlin M., Boyce R. P., Howard-Flanders P. Abnormal metabolic response to ultraviolet light of a recombination deficient mutant of Escherichia coli K12. J Mol Biol. 1966 Aug;19(2):442–454. doi: 10.1016/s0022-2836(66)80015-3. [DOI] [PubMed] [Google Scholar]
  5. Clark A. J. The beginning of a genetic analysis of recombination proficiency. J Cell Physiol. 1967 Oct;70(2 Suppl):165–180. doi: 10.1002/jcp.1040700412. [DOI] [PubMed] [Google Scholar]
  6. Howard-Flanders P., Theriot L. Mutants of Escherichia coli K-12 defective in DNA repair and in genetic recombination. Genetics. 1966 Jun;53(6):1137–1150. doi: 10.1093/genetics/53.6.1137. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Lloyd R. G., Low B., Godson G. N., Birge E. A. Isolation and characterization of an Escherichia coli K-12 mutant with a temperature-sensitive recA- phenotype. J Bacteriol. 1974 Oct;120(1):407–415. doi: 10.1128/jb.120.1.407-415.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Low B. Formation of merodiploids in matings with a class of Rec- recipient strains of Escherichia coli K12. Proc Natl Acad Sci U S A. 1968 May;60(1):160–167. doi: 10.1073/pnas.60.1.160. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Rosner J. L. Formation, induction, and curing of bacteriophage P1 lysogens. Virology. 1972 Jun;48(3):679–689. doi: 10.1016/0042-6822(72)90152-3. [DOI] [PubMed] [Google Scholar]
  10. Rupp W. D., Howard-Flanders P. Discontinuities in the DNA synthesized in an excision-defective strain of Escherichia coli following ultraviolet irradiation. J Mol Biol. 1968 Jan 28;31(2):291–304. doi: 10.1016/0022-2836(68)90445-2. [DOI] [PubMed] [Google Scholar]
  11. Smith K. C., Meun D. H. Repair of radiation-induced damage in Escherichia coli. I. Effect of rec mutations on post-replication repair of damage due to ultraviolet radiation. J Mol Biol. 1970 Aug;51(3):459–472. doi: 10.1016/0022-2836(70)90001-x. [DOI] [PubMed] [Google Scholar]
  12. Willetts N. S., Clark A. J., Low B. Genetic location of certain mutations conferring recombination deficiency in Escherichia coli. J Bacteriol. 1969 Jan;97(1):244–249. doi: 10.1128/jb.97.1.244-249.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES