Abstract
Bakers' yeast cells, Saccharomyces cerevisiae, if grown aerobically on ethanol or if grown aerobically on glucose and allowed to pass into stationary phase, with utilization of accumulated ethanol, maintain a normal value (0.8 to 0.9) of the adenylate energy charge during prolonged starvation. In contrast, cells grown anaerobically on glucose and cells in the early stages of aerobic growth on glucose exhibit a rapid decrease of energy charge if transferred to medium lacking on energy source. These results suggest that functional mitochondria or enzymes of balance of adenine nucleotides during starvation. Yeast cells remain viable at energy charge values below 0.1, in marked contrast to results previously obtained with Escherichia coli. In other respects, the engery charge responses of yeast to starvation and refeeding are generally similar to those previously reported for E. coli.
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- Atkinson D. E. The energy charge of the adenylate pool as a regulatory parameter. Interaction with feedback modifiers. Biochemistry. 1968 Nov;7(11):4030–4034. doi: 10.1021/bi00851a033. [DOI] [PubMed] [Google Scholar]
- Atkinson D. E., Walton G. M. Adenosine triphosphate conservation in metabolic regulation. Rat liver citrate cleavage enzyme. J Biol Chem. 1967 Jul 10;242(13):3239–3241. [PubMed] [Google Scholar]
- BETZ A., CHANCE B. PHASE RELATIONSHIP OF GLYCOLYTIC INTERMEDIATES IN YEAST CELLS WITH OSCILLATORY METABOLIC CONTROL. Arch Biochem Biophys. 1965 Mar;109:585–594. doi: 10.1016/0003-9861(65)90404-2. [DOI] [PubMed] [Google Scholar]
- Barwell C. J., Brunt R. V. The regulation of aerobic polysaccharide synthesis in resting cells of Saccharomyces cerevisiae. Arch Mikrobiol. 1969;66(1):59–62. doi: 10.1007/BF00414663. [DOI] [PubMed] [Google Scholar]
- Barwell C. J., Hess B. Regulation of pyruvate kinase during glyconeogenesis in Saccharomyces cerevisiae. FEBS Lett. 1971 Nov 15;19(1):1–4. doi: 10.1016/0014-5793(71)80591-4. [DOI] [PubMed] [Google Scholar]
- Betz A., Moore C. Fluctuating metabolite levels in yeast cells and extracts, and the control of phosphofructokinase activity in vitro. Arch Biochem Biophys. 1967 May;120(2):268–273. doi: 10.1016/0003-9861(67)90238-x. [DOI] [PubMed] [Google Scholar]
- Bomsel J. L., Pradet A. Study of adenosine 5'-mono-,di- and triphosphates in plant tissues. IV. Regulation of the level of nucleotides, in vivo, by adenylate kinase: theoretical and experimental study. Biochim Biophys Acta. 1968 Aug 20;162(2):230–242. doi: 10.1016/0005-2728(68)90105-9. [DOI] [PubMed] [Google Scholar]
- CONWAY E. J., DOWNEY M. An outer metabolic region of the yeast cell. Biochem J. 1950 Sep;47(3):347–355. doi: 10.1042/bj0470347. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chapman A. G., Fall L., Atkinson D. E. Adenylate energy charge in Escherichia coli during growth and starvation. J Bacteriol. 1971 Dec;108(3):1072–1086. doi: 10.1128/jb.108.3.1072-1086.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chapman C., Bartley W. Adenosine phosphates and the control of glycolysis and gluconeogenesis in yeast. Biochem J. 1969 Mar;111(5):609–613. doi: 10.1042/bj1110609. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cole H. A., Wimpenny J. W., Hughes D. E. The ATP pool in Escherichia coli. I. Measurement of the pool using modified luciferase assay. Biochim Biophys Acta. 1967;143(3):445–453. doi: 10.1016/0005-2728(67)90050-3. [DOI] [PubMed] [Google Scholar]
- Gancedo J. M., Gancedo C. Concentrations of intermediary metabolites in yeast. Biochimie. 1973;55(2):205–211. doi: 10.1016/s0300-9084(73)80393-1. [DOI] [PubMed] [Google Scholar]
- Johnson R. A., Hardman J. G., Broadus A. E., Sutherland E. W. Analysis of adenosine 3',5'-monophosphate with luciferase luminescence. Anal Biochem. 1970 May;35(1):91–97. doi: 10.1016/0003-2697(70)90014-x. [DOI] [PubMed] [Google Scholar]
- Kopperschläger G., von Baehr M. L., Hofmann E. Zur Regulation des mehrphasigen Verlaufes des aeroben und anaeroben Glukoseverbrauches in Hefezellen. Acta Biol Med Ger. 1967;19(5):691–704. [PubMed] [Google Scholar]
- Liao C. L., Atkinson D. E. Regulation at the phosphoenolpyruvate branchpoint in Azotobacter vinelandii: pyruvate kinase. J Bacteriol. 1971 Apr;106(1):37–44. doi: 10.1128/jb.106.1.37-44.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Maitra P. K. Glucose and fructose metabolism in a phosphoglucoisomeraseless mutant of Saccharomyces cerevisiae. J Bacteriol. 1971 Sep;107(3):759–769. doi: 10.1128/jb.107.3.759-769.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Olson B. H., Johnson M. J. FACTORS PRODUCING HIGH YEAST YIELDS IN SYNTHETIC MEDIA. J Bacteriol. 1949 Feb;57(2):235–246. doi: 10.1128/jb.57.2.235-246.1949. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Polakis E. S., Bartley W. Changes in the intracellular concentrations of adenosine phosphates and nicotinamide nucleotides during the aerobic growth cycle of yeast on different carbon sources. Biochem J. 1966 Jun;99(3):521–533. doi: 10.1042/bj0990521. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Setlow P., Kornberg A. Biochemical studies of bacterial sporulation and germination. XXII. Energy metabolism in early stages of germination of Bacillus megaterium spores. J Biol Chem. 1970 Jul 25;245(14):3637–3644. [PubMed] [Google Scholar]
- Somlo M. Respiration-linked ATP formation by an "oxidative phosphorylation mutant" of yeast. Arch Biochem Biophys. 1970 Jan;136(1):122–133. doi: 10.1016/0003-9861(70)90334-6. [DOI] [PubMed] [Google Scholar]
- Strehler B. L. Bioluminescence assay: principles and practice. Methods Biochem Anal. 1968;16:99–181. doi: 10.1002/9780470110348.ch2. [DOI] [PubMed] [Google Scholar]
- WILLIAMSON D. H., SCOPES A. W. The behaviour of nucleic acids in synchronously dividing cultures of Saccharomyces cerevisiae. Exp Cell Res. 1960 Aug;20:338–349. doi: 10.1016/0014-4827(60)90162-2. [DOI] [PubMed] [Google Scholar]