Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1975 May;122(2):375–384. doi: 10.1128/jb.122.2.375-384.1975

Biochemical and regulatory effects of methionine analogues in Saccharomyces cerevisiae.

F Colombani, H Cherest, H de Robichon-Szulmajster
PMCID: PMC246067  PMID: 1092648

Abstract

The effect of three methionine analogues, ethionine, selenomethionine, and trifluoromethionine, on the biosynthesis of methionine in Saccharomyces cerevisiae has been investigated. We have found the following to be true. (i) A sharp decrease in the endogenous methionine concentration occurs after the addition of any one of these analogues to growing cells. (ii) All of them can be transferred to methionine transfer ribonucleic acid in vitro as well as in vivo with, as a consequence, their incorporation into proteins. In the absence of radioactive trifluoromethionine, this conclusion results from experiments of an indirect nature and must be taken as an indication rather than a direct demonstration. (iii) Ethionine and selenomethionine can be activated as homologues of S-adenosylmethionine, whereas trifluoromethionine cannot. (iv) All of them can act as repressors of the methionine biosynthetic pathway. This has been shown by measuring the de novo rate of synthesis of methionine in a culture grown in the presence of any one of the three analogues.

Full text

PDF

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Antoniewski J., Robichon-Szulmajster H. Biosynthesis of methionine and its control in wild type and regulatory mutants of Saccharomyces cerevisiae. Biochimie. 1973 May;55(5):529–539. doi: 10.1016/s0300-9084(73)80413-4. [DOI] [PubMed] [Google Scholar]
  2. Burgess R. R. A new method for the large scale purification of Escherichia coli deoxyribonucleic acid-dependent ribonucleic acid polymerase. J Biol Chem. 1969 Nov 25;244(22):6160–6167. [PubMed] [Google Scholar]
  3. Cherest H., Surdin-Kerjan Y., Antoniewski J., Robichon-Szulmajster H. S-adenosyl methionine-mediated repression of methionine biosynthetic enzymes in Saccharomyces cerevisiae. J Bacteriol. 1973 Jun;114(3):928–933. doi: 10.1128/jb.114.3.928-933.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cherest H., Surdin-Kerjan Y., Antoniewski J., de Robichon-Szulmajster H. Effects of regulatory mutations upon methionine biosynthesis in Saccharomyces cerevisiae: loci eth2-eth3-eth10. J Bacteriol. 1973 Sep;115(3):1084–1093. doi: 10.1128/jb.115.3.1084-1093.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cherest H., Surdin-Kerjan Y., Robichon-Szulmajster H. Methionine-mediated repression in Saccharomyces cerevisiae: a pleiotropic regulatory system involving methionyl transfer ribonucleic acid and the product of gene eth2. J Bacteriol. 1971 Jun;106(3):758–772. doi: 10.1128/jb.106.3.758-772.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cherest H., Talbot G., Robichon-Szulmajster H. Methionine biosynthesis from the 4-carbon skeleton of ethionine in Saccharomyces cerevisiae. Biochem Biophys Res Commun. 1968 Aug 21;32(4):723–730. doi: 10.1016/0006-291x(68)90299-4. [DOI] [PubMed] [Google Scholar]
  7. Chou T. C., Lombardini J. B. A rapid assay procedure for ATP:L-methionine adenosyltransferase. Biochim Biophys Acta. 1972 Aug 28;276(2):399–406. doi: 10.1016/0005-2744(72)91000-5. [DOI] [PubMed] [Google Scholar]
  8. GALZY P., SLONIMSKI P. P. Evolution de la constitution enzymatique de la levure cultivée sur acide lactique ou sur glucose comme seule source de carbone. C R Hebd Seances Acad Sci. 1957 Dec 23;245(26):2556–2558. [PubMed] [Google Scholar]
  9. Lombardini J. B., Coulter A. W., Talalay P. Analogues of methionine as substrates and inhibitors of the methionine adenosyltransferase reaction. Deductions concerning the conformation of methionine. Mol Pharmacol. 1970 Sep;6(5):481–499. [PubMed] [Google Scholar]
  10. MAW G. A. Ability of S-methyl-L-cysteine to annul the inhibition of yeast growth by L-ethionine and by S-ethyl-L-cysteine. J Gen Microbiol. 1961 Jul;25:441–449. doi: 10.1099/00221287-25-3-441. [DOI] [PubMed] [Google Scholar]
  11. MUDD S. H., CANTONI G. L. Activation of methionine for transmethylation. III. The methionine-activating enzyme of Bakers' yeast. J Biol Chem. 1958 Mar;231(1):481–492. [PubMed] [Google Scholar]
  12. MUDD S. H., CANTONI G. L. Selenomethionine in enzymatic transmethylations. Nature. 1957 Nov 16;180(4594):1052–1052. doi: 10.1038/1801052a0. [DOI] [PubMed] [Google Scholar]
  13. Masselot M., de Robichon-Szulmajster H. Methionine biosynthesis in Saccharomyces cerevisiae: mutations at the regulatory locus ETH2. II. Physiological and biochemical data. Mol Gen Genet. 1974 Apr 3;129(4):349–361. doi: 10.1007/BF00265698. [DOI] [PubMed] [Google Scholar]
  14. Maw G. A. Incorporation and distribution of ethionine-sulfur in the protein of ethionine-sensitive and ethionine-resistant yeasts. Arch Biochem Biophys. 1966 Aug;115(2):291–301. doi: 10.1016/0003-9861(66)90277-3. [DOI] [PubMed] [Google Scholar]
  15. McLaughlin C. S., Hartwell L. H. A mutant of yeast with a defective methionyl-tRNA synthetase. Genetics. 1969 Mar;61(3):557–566. doi: 10.1093/genetics/61.3.557. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. PARKS L. W. S-Adenosylethionine and ethionine inhibition. J Biol Chem. 1958 May;232(1):169–176. [PubMed] [Google Scholar]
  17. Robichon-Szulmajster H., Cherest H. Résistance a l'éthionine chez Saccharomyces cerevisiae. II. Etude physiologique. Genetics. 1966 Oct;54(4):993–1006. doi: 10.1093/genetics/54.4.993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. STEKOL J. A. BIOCHEMICAL BASIS FOR ETHIONINE EFFECTS ON TISSUES. Adv Enzymol Relat Areas Mol Biol. 1963;25:369–393. doi: 10.1002/9780470122709.ch7. [DOI] [PubMed] [Google Scholar]
  19. Shapiro S. K., Ehninger D. J. Methods for the analysis and preparation of adenosylmethionine and adenosylhomocysteine. Anal Biochem. 1966 May;15(2):323–333. doi: 10.1016/0003-2697(66)90038-8. [DOI] [PubMed] [Google Scholar]
  20. Stieglitz B., Calvo J. M. Effect of 4-azaleucine upon leucine metabolism in Salmonella typhimurium. J Bacteriol. 1971 Oct;108(1):95–104. doi: 10.1128/jb.108.1.95-104.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Surdin-Kerjan Y., Cherest H., Robichon-Szulmajster H. Relationship between methionyl transfer ribonucleic acid cellular content and synthesis of methionine enzymes in Saccharomyces cerevisiae. J Bacteriol. 1973 Mar;113(3):1156–1160. doi: 10.1128/jb.113.3.1156-1160.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Zygmunt W. A., Tavormina P. A. DL-S-Trifluoromethylhomocysteine, a novel inhibitor of microbial growth. Can J Microbiol. 1966 Feb;12(1):143–148. doi: 10.1139/m66-020. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES