Abstract
The capR (lon) product controls expression of the gal operon independently of the galR repressor. Previously, mutations of the gal operon have been isolated that are semiconstitutive and alter response to the capR and/or capT product. Such mutants imply the existence of a distinct site in the operon that responds to capR (capT) control. This mutation could be either in a site near the operator-distal end of the galE gene, which signals rho factor termination of transcription in vitro or in a site in the operator-promoter region. Bacteriophage U3 was used to isolate galE mutations in HC2142 (a mutant exhibiting reduced response to capR control). P1 transduction was used to cross these mutants with a set of galE gene deletion. Analysis of the resulting Gal+ recombinants indicates that the regulatory site is in the operator-promoter region. Hence, it is unlikely that capR functions in control as an anti-rho factor at the operator-distal end of the galE gene, but more likely as previously suggested, at a second operator distinct from one responding to galR repressor control. Upon induction with D-fucose, a promoter mutant (UV211) isolated previously expressed 20 to 30% of the galactose enzymes that the wild type exhibited in the presence of the inducer D-fucose. The effects of various mutations in cya, capR, and galR on galactokinase synthesis in this mutant were determined. Galactokinase was derepressed by capR as well as galR, but the presence or absence of the cya gene product was unimportant.
Full text
PDF







Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- ADLER H. I., HARDIGREE A. A. ANALYSIS OF A GENE CONTROLLING CELL DIVISION AND SENSITIVITY TO RADIATION IN ESCHERICHIA COLI. J Bacteriol. 1964 Mar;87:720–726. doi: 10.1128/jb.87.3.720-726.1964. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Adhya S. L., Shapiro J. A. The galactose operon of E. coli K-12. I. Structural and pleiotropic mutations of the operon. Genetics. 1969 Jun;62(2):231–247. doi: 10.1093/genetics/62.2.231. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Buchanan C. E., Hua S. S., Avni H., Markovitz A. Transcriptional control of the calactose operon by the capR (lon) and capT genes. J Bacteriol. 1973 May;114(2):891–893. doi: 10.1128/jb.114.2.891-893.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Buchanan C. E., Markovitz A. Derepression of uridine diphosphate-glucose pyrophosphorylase (galU) in capR(lon), capS, and capT mutants and studies on the galU repressor. J Bacteriol. 1973 Sep;115(3):1011–1020. doi: 10.1128/jb.115.3.1011-1020.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bukhari A. I., Zipser D. Mutants of Escherichia coli with a defect in the degradation of nonsense fragments. Nat New Biol. 1973 Jun 20;243(129):238–241. doi: 10.1038/newbio243238a0. [DOI] [PubMed] [Google Scholar]
- Bush J. W., Markovitz A. The Genetic Basis for Mucoidy and Radiation Sensitivity in capR (lon) Mutants of E. coli K-12. Genetics. 1973 Jun;74(2):215–225. doi: 10.1093/genetics/74.2.215. [DOI] [PMC free article] [PubMed] [Google Scholar]
- De Crombrugghe B., Adhya S., Gottesman M., Pastan I. Effect of Rho on transcription of bacterial operons. Nat New Biol. 1973 Feb 28;241(113):260–264. doi: 10.1038/newbio241260a0. [DOI] [PubMed] [Google Scholar]
- HOWARD-FLANDERS P., SIMSON E., THERIOT L. A LOCUS THAT CONTROLS FILAMENT FORMATION AND SENSITIVITY TO RADIATION IN ESCHERICHIA COLI K-12. Genetics. 1964 Feb;49:237–246. doi: 10.1093/genetics/49.2.237. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hanson T. E., Anderson R. L. Phosphoenolpyruvate-dependent formation of D-fructose 1-phosphate by a four-component phosphotransferase system. Proc Natl Acad Sci U S A. 1968 Sep;61(1):269–276. doi: 10.1073/pnas.61.1.269. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hua S. S., Markovitz A. Multiple regulator gene control of the galactose operon in Escherichia coli K-12. J Bacteriol. 1972 Jun;110(3):1089–1099. doi: 10.1128/jb.110.3.1089-1099.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kang S., Markovitz A. Induction of capsular polysaccharide synthesis by rho-fluorophenylalanine in Escherichia coli wild type and strains with altered phenylalanyl soluble ribonucleic acid synthetase. J Bacteriol. 1967 Feb;93(2):584–591. doi: 10.1128/jb.93.2.584-591.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LENNOX E. S. Transduction of linked genetic characters of the host by bacteriophage P1. Virology. 1955 Jul;1(2):190–206. doi: 10.1016/0042-6822(55)90016-7. [DOI] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Lieberman M. M., Buchanan C. E., Markovitz A. Derepression of GDP-alpha-mannose and UDP-glucose pyrophosphorylases by a regulator gene mutation; episomal dominance in partial diploids. Proc Natl Acad Sci U S A. 1970 Mar;65(3):625–632. doi: 10.1073/pnas.65.3.625. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lieberman M. M., Markovitz A. Depression of guanosine diphosphate-mannose pyrophosphorylase by mutations in two different regulator genes involved in capsular polysaccharide synthesis in Escherichia coli K-12. J Bacteriol. 1970 Mar;101(3):965–972. doi: 10.1128/jb.101.3.965-972.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lieberman M. M., Shaparis A., Markovitz A. Control of uridine diphosphate-glucose dehydrogenase synthesis and uridine diphosphate-glucuronic acid accumulation by a regulator gene mutation in Escherichia coli K-12. J Bacteriol. 1970 Mar;101(3):959–964. doi: 10.1128/jb.101.3.959-964.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
- MARKOVITZ A. REGULATORY MECHANISMS FOR SYNTHESIS OF CAPSULAR POLYSACCHARIDE IN MUCOID MUTANTS OF ESCHERICHIA COLI K12. Proc Natl Acad Sci U S A. 1964 Feb;51:239–246. doi: 10.1073/pnas.51.2.239. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mackie G., Wilson D. B. Regulation of the gal operon of Escherichia coli by the capR gene. J Biol Chem. 1972 May 25;247(10):2973–2978. [PubMed] [Google Scholar]
- Markovitz A., Baker B. Suppression of radiation sensitivity and capsular polysaccharide synthesis in Escherichia coli K-12 by ochre suppressors. J Bacteriol. 1967 Aug;94(2):388–395. doi: 10.1128/jb.94.2.388-395.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Markovitz A., Lieberman M. M., Rosenbaum N. Derepression of phosphomannose isomerase by regulator gene mutations involved in capsular polysaccharide synthesis in Escherichia coli K-12. J Bacteriol. 1967 Nov;94(5):1497–1501. doi: 10.1128/jb.94.5.1497-1501.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Markovitz A., Rosenbaum N. A regulator gene that is dominant on an episome and recessive on a chromosome. Proc Natl Acad Sci U S A. 1965 Oct;54(4):1084–1091. doi: 10.1073/pnas.54.4.1084. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Miller J. H., Ippen K., Scaife J. G., Beckwith J. R. The promoter-operator region of the lac operon of Escherichia coli. J Mol Biol. 1968 Dec;38(3):413–420. doi: 10.1016/0022-2836(68)90395-1. [DOI] [PubMed] [Google Scholar]
- Nakanishi S., Adhya S., Gottesman M., Pastan I. Studies on the mechanism of action of the gal repressor. J Biol Chem. 1973 Sep 10;248(17):5937–5942. [PubMed] [Google Scholar]
- Nisseley S. P., Anderson W. B., Gottesman M. E., Perlman R. L., Pastan I. In vitro transcription of the gal operon requires cyclic adenosine monophosphate and cyclic adenosine monophosphate receptor protein. J Biol Chem. 1971 Aug 10;246(15):4671–4678. [PubMed] [Google Scholar]
- Parks J. S., Gottesman M., Perlman R. L., Pastan I. Regulation of galactokinase synthesis by cyclic adenosine 3',5'-monophosphate in cell-free extracts of Escherichia coli. J Biol Chem. 1971 Apr 25;246(8):2419–2424. [PubMed] [Google Scholar]
- Parks J. S., Gottesman M., Shimada K., Weisberg R. A., Perlman R. L., Pastan I. Isolation of the gal repressor. Proc Natl Acad Sci U S A. 1971 Aug;68(8):1891–1895. doi: 10.1073/pnas.68.8.1891. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Perlman R. L., Pastan I. Pleiotropic deficiency of carbohydrate utilization in an adenyl cyclase deficient mutant of Escherichia coli. Biochem Biophys Res Commun. 1969 Sep 24;37(1):151–157. doi: 10.1016/0006-291x(69)90893-6. [DOI] [PubMed] [Google Scholar]
- Rothman-Denes L. B., Hesse J. E., Epstein W. Role of cyclic adenosine 3',5'-monophosphate in the in vivo expression of the galactose operon of Escherichia coli. J Bacteriol. 1973 Jun;114(3):1040–1044. doi: 10.1128/jb.114.3.1040-1044.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
- SHERMAN J. R., ADLER J. Galactokinse from Escherichia coli. J Biol Chem. 1963 Mar;238:873–878. [PubMed] [Google Scholar]
- Sankaran L., Pogell B. M. Differential inhibition of catabolite-sensitive enzyme induction by intercalating dyes. Nat New Biol. 1973 Oct 31;245(148):257–260. doi: 10.1038/newbio245257a0. [DOI] [PubMed] [Google Scholar]
- Shapiro J. A., Adhya S. L. The galactose operon of E. coli K-12. II. A deletion analysis of operon structure and polarity. Genetics. 1969 Jun;62(2):249–264. doi: 10.1093/genetics/62.2.249. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shineberg B., Zipser D. The ion gene and degradation of beta-galactosidase nonsense fragments. J Bacteriol. 1973 Dec;116(3):1469–1471. doi: 10.1128/jb.116.3.1469-1471.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Takano T. Bacterial mutants defective in plasmid formation: requirement for the lon + allele. Proc Natl Acad Sci U S A. 1971 Jul;68(7):1469–1473. doi: 10.1073/pnas.68.7.1469. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tsuyumu S., Adams B. G. Dilution kinetic studies of yeast populations: in vivo aggregation of galactose utilizing enzymes and positive regulator molecules. Genetics. 1974 Jul;77(3):491–505. doi: 10.1093/genetics/77.3.491. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Uretz R. B., Markovitz A. Dominance of ultraviolet radiation resistance in partial diploids of Escherichia coli K-12. J Bacteriol. 1969 Nov;100(2):1118–1120. doi: 10.1128/jb.100.2.1118-1120.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Walker J. R., Ussery C. L., Allen J. S. Bacterial cell division regulation: lysogenization of conditional cell division lon - mutants of Escherichia coli by bacteriophage. J Bacteriol. 1973 Mar;113(3):1326–1332. doi: 10.1128/jb.113.3.1326-1332.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Watson G., Paigen K. Isolation and characterization of an Escherichia coli bacteriophage requiring cell wall galactose. J Virol. 1971 Nov;8(5):669–674. doi: 10.1128/jvi.8.5.669-674.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wetekam W., Staack K., Ehring R. DNA-dependent in vitro synthesis of enzymes of the galactose operon of Escherichia coli. Mol Gen Genet. 1971;112(1):14–27. doi: 10.1007/BF00266928. [DOI] [PubMed] [Google Scholar]
- Willmund R., Kneser H. Different binding of RNA polymerase to individual promoters. Mol Gen Genet. 1973 Nov 2;126(2):165–175. doi: 10.1007/BF00330991. [DOI] [PubMed] [Google Scholar]
- YANOFSKY C., CARLTON B. C., GUEST J. R., HELINSKI D. R., HENNING U. ON THE COLINEARITY OF GENE STRUCTURE AND PROTEIN STRUCTURE. Proc Natl Acad Sci U S A. 1964 Feb;51:266–272. doi: 10.1073/pnas.51.2.266. [DOI] [PMC free article] [PubMed] [Google Scholar]
