Abstract
Correlation between beta-galactosidase synthesis and cyclic adenosine 3',5'-monophosphate (cAMP) levels in a membrane fraction obtained from disrupted spheroplasts of Escherichia coli was investigated. Repression of beta-galactosidase synthesis in the membrane fraction by glucose-6-phosphate and by 2-deoxyglucose differed in sensitivity to reversal by cAMP. The difference between the two repressions could be due to the fact that glucose-6-phosphate inhibited severely the accumulation of exogenous [3-H]cAMP by the membrane fraction, whereas 2-deoxyglucose had little effect on the accumulation of the nucleotide. On the other hand, a quick decrease in the level of [3-H]cAMP preaccumulated in the membrane fraction resulted from addition of either glucose-6-phosphate or 2-deoxyglucose. Results reported here suggest that repression of beta-galactosidase synthesis is associated with anabrupt decrease in cAMP levels at the intramembranal sites where beta-galactosidase is synthesized, and the major, if not sole, mechanism which leads to instantaneous drop of cAMP level is via the release of cAMP, but not by degradation of the nucleotide since the membrane fraction retained less than 10 percent of cellular cyclic phosphodiesterase and the activity of the enzyme was not affected by repressing sugars.
Full text
PDF






Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Barnes E. M., Jr, Kaback H. R. Beta-galactoside transport in bacterial membrane preparations: energy coupling via membrane-bounded D-lactic dehydrogenase. Proc Natl Acad Sci U S A. 1970 Aug;66(4):1190–1198. doi: 10.1073/pnas.66.4.1190. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Braná H. Adenyl cyclase in cell-free extracts of Escherichia coli. Folia Microbiol (Praha) 1969;14(3):185–189. doi: 10.1007/BF02872776. [DOI] [PubMed] [Google Scholar]
- Braná H., Chytil F. Splitting of the cyclic 3',5'-adenosine monophosphate in cell--free system of Escherichia coli. Folia Microbiol (Praha) 1966;11(1):43–46. doi: 10.1007/BF02877154. [DOI] [PubMed] [Google Scholar]
- Buettner M. J., Spitz E., Rickenberg H. V. Cyclic adenosine 3',5'-monophosphate in Escherichia coli. J Bacteriol. 1973 Jun;114(3):1068–1073. doi: 10.1128/jb.114.3.1068-1073.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
- De Crombrugghe B., Chen B., Anderson W., Nissley P., Gottesman M., Pastan I., Perlman R. Lac DNA, RNA polymerase and cyclic AMP receptor protein, cyclic AMP, lac repressor and inducer are the essential elements for controlled lac transcription. Nat New Biol. 1971 Jun 2;231(22):139–142. doi: 10.1038/newbio231139a0. [DOI] [PubMed] [Google Scholar]
- Eron L., Arditti R., Zubay G., Connaway S., Beckwith J. R. An adenosine 3':5'-cyclic monophosphate-binding protein that acts on the transcription process. Proc Natl Acad Sci U S A. 1971 Jan;68(1):215–218. doi: 10.1073/pnas.68.1.215. [DOI] [PMC free article] [PubMed] [Google Scholar]
- FRASER D., JERREL E. A. The amino acid composition of T3 bacteriophage. J Biol Chem. 1953 Nov;205(1):291–295. [PubMed] [Google Scholar]
- Kaback H. R., Stadtman E. R. Proline uptake by an isolated cytoplasmic membrane preparation of Escherichia coli. Proc Natl Acad Sci U S A. 1966 Apr;55(4):920–927. doi: 10.1073/pnas.55.4.920. [DOI] [PMC free article] [PubMed] [Google Scholar]
- MAKMAN R. S., SUTHERLAND E. W. ADENOSINE 3',5'-PHOSPHATE IN ESCHERICHIA COLI. J Biol Chem. 1965 Mar;240:1309–1314. [PubMed] [Google Scholar]
- MIZUNO S., YOSHIDA E., TAKAHASHI H., MARUO B. Experimental proof of a compartment of "energy-rich"-P in a subcellular system from Pseudomonas. Biochim Biophys Acta. 1961 May 13;49:369–381. doi: 10.1016/0006-3002(61)90136-6. [DOI] [PubMed] [Google Scholar]
- Maruo B., Seto H., Nagata Y. Inducible synthesis of beta-galactosidase in disrupted spheroplast of Escherichia coli. J Bacteriol. 1969 Oct;100(1):209–214. doi: 10.1128/jb.100.1.209-214.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mizuno S., Maruo B. Role of the cytoplasmic membrane in the synthesis of ribonucleic acid by disrupted spheroplasts of Pseudomonas schuylkilliensis. J Bacteriol. 1972 Jan;109(1):218–228. doi: 10.1128/jb.109.1.218-228.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mizuno S., Matsuzawa H., Nagata Y., Shibuya I., Takahashi H., Maruo B. Synthesis of protein and nucleic acid by disrupted spheroplasts of Pseudomonas schuylkilliensis. J Bacteriol. 1971 Feb;105(2):538–552. doi: 10.1128/jb.105.2.538-552.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Monard D., Janecek J., Rickenberg H. V. The enzymic degradation of 3',5' cyclic AMP in strains of E. Coli sensitive and resistant to catobolite repression. Biochem Biophys Res Commun. 1969 May 22;35(4):584–591. doi: 10.1016/0006-291x(69)90388-x. [DOI] [PubMed] [Google Scholar]
- Nagata Y., Maruo B. Ribosome formation in the absence of protein synthesis by a spheroplast membrane system from Escherichia coli. J Biochem. 1967 Dec;62(6):769–771. doi: 10.1093/oxfordjournals.jbchem.a128734. [DOI] [PubMed] [Google Scholar]
- Nagata Y., Mizuno S., Maruo B. Preparation and properties of active membrane systems from various species of bacteria. J Biochem. 1966 Apr;59(4):404–410. doi: 10.1093/oxfordjournals.jbchem.a128316. [DOI] [PubMed] [Google Scholar]
- Nagata Y., Shibuya I., Maruo B. Preparation and properties of an active membrane system from Escherichia coli. J Biochem. 1967 May;61(5):623–632. doi: 10.1093/oxfordjournals.jbchem.a128592. [DOI] [PubMed] [Google Scholar]
- Pastan I., Perlman R. Cyclic adenosine monophosphate in bacteria. Science. 1970 Jul 24;169(3943):339–344. doi: 10.1126/science.169.3943.339. [DOI] [PubMed] [Google Scholar]
- Perlman R. L., De Crombrugghe B., Pastan I. Cyclic AMP regulates catabolite and transient repression in E. coli. Nature. 1969 Aug 23;223(5208):810–812. doi: 10.1038/223810a0. [DOI] [PubMed] [Google Scholar]
- Peterkofsky A., Gazdar C. Glucose and the metabolism of adenosine 3':5'-cyclic monophosphate in Escherichia coli. Proc Natl Acad Sci U S A. 1971 Nov;68(11):2794–2798. doi: 10.1073/pnas.68.11.2794. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Peterkofsky A., Gazdar C. Glucose inhibition of adenylate cyclase in intact cells of Escherichia coli B. Proc Natl Acad Sci U S A. 1974 Jun;71(6):2324–2328. doi: 10.1073/pnas.71.6.2324. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Seto H., Nagata Y., Maruo B. Two types of glucose effects on beta-galactosidase synthesis in a membrane fraction of Escherichia coli: correlation with repression observed in intact cells. J Bacteriol. 1975 May;122(2):660–668. doi: 10.1128/jb.122.2.660-668.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wayne P. K., Rosen O. M. Cyclic 3':5'-adenosine monophosphate in Escherichia coli during transient and catabolite repression. Proc Natl Acad Sci U S A. 1974 Apr;71(4):1436–1440. doi: 10.1073/pnas.71.4.1436. [DOI] [PMC free article] [PubMed] [Google Scholar]
