Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1975 May;122(2):695–709. doi: 10.1128/jb.122.2.695-709.1975

Mutants of Neurospora deficient in nicotinamide adenine dinucleotide (phosphate) glycohydrolase.

R E Nelson, C P Selitrennikoff, R W Siegel
PMCID: PMC246109  PMID: 165174

Abstract

A new screening technique has been developed for the rapid identification of Neurospora crassa mutants that are deficient in nicotinamide adenine dinucleotide glycohydrolase (NADase) and nicotinamide adenine dinucleotide phosphate glycohydrolase (NADPase) activities. Using this procedure, five single-gene mutants were isolated whose singular difference from wild type appeared to be the absence of NAD(P)ase (EC 3.2.2.6). All five mutants were found to be genetically allelic and did not complement in heterocaryons. This gene, nada [NAD(P)ase], was localized in linkage group IV. One of the nada alleles was found to specify an enzyme that was critically temperature sensitive and had altered substrate affinity. Mutations at the nada locus did not affect the genetic program for the expression of NAD(P)ase during cell differentiation, nor did they have a general effect on NAD catabolism. Nada mutations did not have simultaneous effects on other glycohydrolase activities. Tests of dominance (in heterocaryons) and in vitro mixing experiments did not provide evidence that nada mutations alter activators or inhibitors of NAD(P)ase. Thus, the nada gene appears to specify only the structure of N. crassa NAD(P)ase.

Full text

PDF
695

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Atwood K C, Mukai F. Nuclear Distribution in Conidia of Neurospora Heterokaryons. Genetics. 1955 Jul;40(4):438–443. doi: 10.1093/genetics/40.4.438. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Brody S. Correlation between reduced nicotinamide adenine dinucleotide phosphate levels and morphological changes in Neurospora crassa. J Bacteriol. 1970 Mar;101(3):802–807. doi: 10.1128/jb.101.3.802-807.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Brody S., Harris S. Circadian rhythms in neurospora: spatial differences in pyridine nucleotide levels. Science. 1973 May 4;180(4085):498–500. doi: 10.1126/science.180.4085.498. [DOI] [PubMed] [Google Scholar]
  4. COLOWICK S. P., KAPLAN N. O., CIOTTI M. M. The reaction of pyridine nucleotide with cyanide and its analytical use. J Biol Chem. 1951 Aug;191(2):447–459. [PubMed] [Google Scholar]
  5. Collier R. J. Effect of diphtheria toxin on protein synthesis: inactivation of one of the transfer factors. J Mol Biol. 1967 Apr 14;25(1):83–98. doi: 10.1016/0022-2836(67)90280-x. [DOI] [PubMed] [Google Scholar]
  6. Combépine G., Turian G. Activités de quelques enzymes associés à la conidiogenèse du Neurospora crassa. Arch Mikrobiol. 1970;72(1):36–47. [PubMed] [Google Scholar]
  7. De Serres F. J., Brockman H. E., Barnett W. E., Kolmark H. G. Mutagen specificity in Neurospora crassa. Mutat Res. 1971 Jun;12(2):129–142. doi: 10.1016/0027-5107(71)90134-5. [DOI] [PubMed] [Google Scholar]
  8. Everse J., Kaplan N. O. Characteristics of microbial diphosphopyridine nucleotidases containing exceptionally large amounts of polysaccharides. J Biol Chem. 1968 Nov 25;243(22):6072–6074. [PubMed] [Google Scholar]
  9. Fisher C. R. Phosphoribosyl-aminoimidazole-succinocarboxamide synthetase from Neurospora crassa. I. Partial purification and properties. Biochim Biophys Acta. 1969 Apr 22;178(2):380–388. doi: 10.1016/0005-2744(69)90406-9. [DOI] [PubMed] [Google Scholar]
  10. KAPLAN N. O., COLOWICK S. P., NASON A. Neurospora diphosphopyridine nucleotidase. J Biol Chem. 1951 Aug;191(2):473–483. [PubMed] [Google Scholar]
  11. Kadner R. J., Nyc J. F. Repressible alkaline phosphatase in Neurospora crassa. 3. Enzymatic properties. J Biol Chem. 1969 Oct 10;244(19):5125–5130. [PubMed] [Google Scholar]
  12. Kobr M. J., Turian G., Zimmerman E. J. Changes in enzymes regulating isocitrate breakdown in Neurospora crassa. Arch Mikrobiol. 1965 Oct 14;52(2):169–177. doi: 10.1007/BF00407726. [DOI] [PubMed] [Google Scholar]
  13. LEDER I. G., HANDLER P. Synthesis of nicotinamide mononucleotide by human erythrocytes in vitro. J Biol Chem. 1951 Apr;189(2):889–899. [PubMed] [Google Scholar]
  14. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  15. Malling H. V., de Serres F. J. Identification of genetic alterations induced by ethyl methanesulfonate in Neurospora crassa. Mutat Res. 1968 Sep-Oct;6(2):181–193. doi: 10.1016/0027-5107(68)90033-x. [DOI] [PubMed] [Google Scholar]
  16. Matsuyama S. S., Nelson R. E., Siegel R. W. Mutations specifically blocking differentiation of macroconidia Neurospora crassa. Dev Biol. 1974 Dec;41(2):278–287. doi: 10.1016/0012-1606(74)90306-6. [DOI] [PubMed] [Google Scholar]
  17. Perkins D. D., Newmeyer D., Taylor C. W., Bennett D. C. New markers and map sequences in Neurospora crassa, with a description of mapping by duplication coverage, and of multiple translocation stocks for testing linkage. Genetica. 1969;40(3):247–278. doi: 10.1007/BF01787357. [DOI] [PubMed] [Google Scholar]
  18. Prout T, Huebschman C, Levene H, Ryan F J. The Proportions of Nuclear Types in Neurospora Heterocaryons as Determined by Plating Conidia. Genetics. 1953 Sep;38(5):518–529. doi: 10.1093/genetics/38.5.518. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Sargent M. L., Briggs W. R., Woodward D. O. Circadian nature of a rhythm expressed by an invertaseless strain of Neurospora crassa. Plant Physiol. 1966 Oct;41(8):1343–1349. doi: 10.1104/pp.41.8.1343. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Sargent M. L., Woodward D. O. Gene-enzyme relationships in Neurospora invertase. J Bacteriol. 1969 Feb;97(2):867–872. doi: 10.1128/jb.97.2.867-872.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Siegel R. W., Matsuyama S. S., Urey J. C. Induced macroconidia formation in Neurospora crassa. Experientia. 1968 Nov 15;24(11):1179–1181. doi: 10.1007/BF02147840. [DOI] [PubMed] [Google Scholar]
  22. Stine G. J. Enzyme activities during the asexual cycle of Neurospora crassa. 3. Nicotinamide adenosine diphosphate glycohydrolase. Can J Microbiol. 1969 Nov;15(11):1249–1254. doi: 10.1139/m69-227. [DOI] [PubMed] [Google Scholar]
  23. Tatum E. L., Barratt R. W., Cutter V. M., Jr Chemical Induction of Colonial Paramorphs in Neurospora and Syncephalastrum. Science. 1949 May 20;109(2838):509–511. doi: 10.1126/science.109.2838.509. [DOI] [PubMed] [Google Scholar]
  24. Turner J. R., Sorsoli W. A., Matchett W. H. Induction of kynureninase in Neurospora. J Bacteriol. 1970 Aug;103(2):364–369. doi: 10.1128/jb.103.2.364-369.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Urey J. C. Enzyme patterns and protein synthesis during synchronous conidiation in Neurospora crassa. Dev Biol. 1971 Sep;26(1):17–27. doi: 10.1016/0012-1606(71)90103-5. [DOI] [PubMed] [Google Scholar]
  26. Weiss B., Turian G. A study of conidiation in Neurospora crassa. J Gen Microbiol. 1966 Sep;44(3):407–418. doi: 10.1099/00221287-44-3-407. [DOI] [PubMed] [Google Scholar]
  27. Witholt B. Method for isolating mutants overproducing nicotinamide adenine dinucleotide and its precursors. J Bacteriol. 1972 Jan;109(1):350–364. doi: 10.1128/jb.109.1.350-364.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES