Abstract
Escherichia coli AT2046 has been shown previously to lack the enzyme serine transhydroxymethylase and to require exogenous glycine for growth as a consequence. Strains JEV73 and JEV73R, mutants derived from strain AT2046, are shown here to be serine transhydroxymethylase deficient, but able to derive their glycine from endogenously synthesized threonine. Leucine is shown to be closely involved in the regulation of biosynthesis of glycine, to spare glycine in strain AT2046T, to replace glycine in strain JEV73, and to increase threonine conversion to glycine in a representative prototroph of E. coli. An interpretation of strains JEV73 and JEV73R as regulatory mutants of strain AT2046 is given. A hypothesis as to the role of leucine as a signal for nitrogen scavenging is suggested.
Full text
PDF







Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Folk W. R., Berg P. Isolation and partial characterization of Escherichia coli mutants with altered glycyl transfer ribonucleic acid synthetases. J Bacteriol. 1970 Apr;102(1):193–203. doi: 10.1128/jb.102.1.193-203.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Isenberg S., Newman E. B. Studies on L-serine deaminase in Escherichia coli K-12. J Bacteriol. 1974 Apr;118(1):53–58. doi: 10.1128/jb.118.1.53-58.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
- KARASEK M. A., GREENBERG D. M. Studies on the properties of threonine aldolases. J Biol Chem. 1957 Jul;227(1):191–205. [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- McGivan J. D., Bradford N. M., Crompton M., Chappell J. B. Effect of L-leucine on the nitrogen metabolism of isolated rat liver mitochondria. Biochem J. 1973 May;134(1):209–215. doi: 10.1042/bj1340209. [DOI] [PMC free article] [PubMed] [Google Scholar]
- NEWMAN E. B., MAGASANIK B. THE RELATION OF SERINE--GLYCINE METABOLISM TO THE FORMATION OF SINGLE-CARBON UNITS. Biochim Biophys Acta. 1963 Nov 15;78:437–448. doi: 10.1016/0006-3002(63)90905-3. [DOI] [PubMed] [Google Scholar]
- Newman E. B. Metabolism of serine and glycine in E. coli K12. I. The role of formate in the metabolism of serine-glycine auxotrophs. Can J Microbiol. 1970 Oct;16(10):933–940. doi: 10.1139/m70-160. [DOI] [PubMed] [Google Scholar]
- PARDEE A. B., PRESTIDGE L. S. Induced formation of serine and threonine deaminases by Escherichia coli. J Bacteriol. 1955 Dec;70(6):667–674. doi: 10.1128/jb.70.6.667-674.1955. [DOI] [PMC free article] [PubMed] [Google Scholar]
- PIZER L. I. GLYCINE SYNTHESIS AND METABOLISM IN ESCHERICHIA COLI. J Bacteriol. 1965 Apr;89:1145–1150. doi: 10.1128/jb.89.4.1145-1150.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
- PIZER L. I., POTOCHNY M. L. NUTRITIONAL AND REGULATORY ASPECTS OF SERINE METABOLISM IN ESCHERICHIA COLI. J Bacteriol. 1964 Sep;88:611–619. doi: 10.1128/jb.88.3.611-619.1964. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Patte J. C., Le Bras G., Cohen G. N. Regulation by methionine of the synthesis of a third aspartokinase and of a second homoserine dehydrogenase in Escherichia coli K 12. Biochim Biophys Acta. 1967 Mar 22;136(2):245–247. doi: 10.1016/0304-4165(67)90069-4. [DOI] [PubMed] [Google Scholar]
- Roepke R. R., Libby R. L., Small M. H. Mutation or Variation of Escherichia coli with Respect to Growth Requirements. J Bacteriol. 1944 Oct;48(4):401–412. doi: 10.1128/jb.48.4.401-412.1944. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schirch L., Gross T. Serine transhydroxymethylase. Identification as the threonine and allothreonine aldolases. J Biol Chem. 1968 Nov 10;243(21):5651–5655. [PubMed] [Google Scholar]
- VANLENTEN E. J., SIMMONDS S. METABOLIC RELATIONS BETWEEN L-THREONINE AND GLYCINE IN ESCHERICHIA COLI. J Biol Chem. 1965 Aug;240:3361–3371. [PubMed] [Google Scholar]
- YIELDING K. L., TOMKINS G. M. An effect of L-leucine and other essential amino acids on the structure and activity of glutamic dehydrogenase. Proc Natl Acad Sci U S A. 1961 Jul 15;47:983–989. doi: 10.1073/pnas.47.7.983. [DOI] [PMC free article] [PubMed] [Google Scholar]