Abstract
Pseudomonas MS can grow on methylamine and a number of other compounds containing C1 units as a sole source of carbon and energy. Assimilation of carbon into cell material occurs via the "serine pathway" since enzymes of this pathway are induced after growth on methylamine, but not malate or acetate. A mutant has been isolated which is unable to grow on methylamine or any other related substrate providing C1 units. This mutant is also unable to grow on acetate. Measurment of enzyme activities in cell-free extracts of wild-type cells showed that growth on methylamine caused induction of isocitrate lyase, a key enzyme in the glyoxylate cycle. The mutant organism lacks malate lyase, a key enzyme of the serine pathway, and isocitrate lyase as well. These results suggest that utilization of C1 units by Pseudomonas MS results in the net accumulation of acetate which is then assimilated into cell material via the glyoxylate cycle.
Full text
PDF





Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bellion E., Hersh L. B. Methylamine metabolism in a pseudomonas species. Arch Biochem Biophys. 1972 Nov;153(1):368–374. doi: 10.1016/0003-9861(72)90457-2. [DOI] [PubMed] [Google Scholar]
- Harder W., Quayle J. R. The biosynthesis of serine and glycine in Pseudomonas AM1 with special reference to growth on carbon sources other than C1 compounds. Biochem J. 1971 Mar;121(5):753–762. doi: 10.1042/bj1210753. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hersh L. B., Bellion E. Malate cleavage reaction in Pseudomonas species, (Shaw strain MA). Biochem Biophys Res Commun. 1972 Aug 7;48(3):712–719. doi: 10.1016/0006-291x(72)90407-x. [DOI] [PubMed] [Google Scholar]
- JAYASURIYA G. C. The isolation and characteristics of an oxalate-decomposing organism. J Gen Microbiol. 1955 Jun;12(3):419–428. doi: 10.1099/00221287-12-3-419. [DOI] [PubMed] [Google Scholar]
- KORNBERG H. L., KREBS H. A. Synthesis of cell constituents from C2-units by a modified tricarboxylic acid cycle. Nature. 1957 May 18;179(4568):988–991. doi: 10.1038/179988a0. [DOI] [PubMed] [Google Scholar]
- Kung H. F., Wagner C. Oxidation of C-1 compounds by Pseudomonas sp. MS. Biochem J. 1970 Feb;116(3):357–365. doi: 10.1042/bj1160357. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LARGE P. J., PEEL D., QUAYLE J. R. Microbial growth on C1 compounds. II. Synthesis of cell constituents by methanol- and formate-grown Pseudomonas AM 1, and methanol-grown Hyphomicrobium vulgare. Biochem J. 1961 Dec;81:470–480. doi: 10.1042/bj0810470. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Large P. J., Peel D., Quayle J. R. Microbial growth on C(1) compounds. 4. Carboxylation of phosphoenolpyruvate in methanol-grown Pseudomonas AM1. Biochem J. 1962 Oct;85(1):243–250. doi: 10.1042/bj0850243. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Large P. J., Quayle J. R. Microbial growth on C(1) compounds. 5. Enzyme activities in extracts of Pseudomonas AM1. Biochem J. 1963 May;87(2):386–396. doi: 10.1042/bj0870386. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Salem A. R., Hacking A. J., Quayle J. R. Cleavage of malyl-Coenzyme A into acetyl-Coenzyme A and glyoxylate by Pseudomonas AM1 and other C1-unit-utilizing bacteria. Biochem J. 1973 Sep;136(1):89–96. doi: 10.1042/bj1360089. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Salem A. R., Wagner C., Hacking A. J., Quayle J. R. The metabolism of lactate and pyruvate by Pseudomonas AM1. J Gen Microbiol. 1973 Jun;76(2):375–388. doi: 10.1099/00221287-76-2-375. [DOI] [PubMed] [Google Scholar]
- Wagner C., Quayle J. R. Carbon assimilation pathways during growth of Pseudomonas AM1 on methylamine and Pseudomonas MS on methylamine and trimethylsulphonium salts. J Gen Microbiol. 1972 Oct;72(3):485–491. doi: 10.1099/00221287-72-3-485. [DOI] [PubMed] [Google Scholar]
