Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1975 Jun;122(3):1257–1264. doi: 10.1128/jb.122.3.1257-1264.1975

Purification and properties of glutamate dehydrogenase from a thermophilic bacillus.

I Epstein, N Grossowicz
PMCID: PMC246183  PMID: 238942

Abstract

A 250- to 300-fold purification of a nicotinamide adenine denucleotide phosphate (NADP)-dependent glutamate dehydrogenase (GDH, E.C. 1.4.1.4) with a yield of 60% from a thermophilic bacillus is described. More than one NADP-specific GDH was detected by polyacrylamide gel electrophoresis. The enzyme is of high molecular weight (approximately 2 X 10-6), similar to that of the beef and frog liver GDH. The pI of the thermophilic GDH is at pH 5.24. The enzyme is highly thermostable at the pH range of 5.8 to 9.0. The purified GDH, unlike the crude enzyme, was very labile at subzero temperatures. An unidentified factor(s) from the crude cell-free extract prevented the inactivation of the purified GDH at -70 C. Various reactants of the GDH system and D-glutamate also protected, to some extent, the enzyme from inactivation at -70 C. From the Michaelis constants for glutamate (1.1 X 10-2M), NADP (3 X 10-4M), ammonia (2.1 X 10-2M), alpha-ketoglutarate (1.3 X 10-3M), and reduced NADP (5.3 X 10-5M), it is suggested that the enzyme catalyzes in vivo the formation of glutamate from ammonia and alpha-ketoglutarate. The amination of alpha-ketoglutarate and deamination of glutamate by the thermophilic GDH are optimal at the pH values of 7.2 and 8.4, respectively.

Full text

PDF
1257

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arkin H., Grossowicz N. Inhibition by D-glutamate of growth and glutamate dehydrogenase activity of Neurospora crassa. J Gen Microbiol. 1970 May;61(2):255–261. doi: 10.1099/00221287-61-2-255. [DOI] [PubMed] [Google Scholar]
  2. BARRATT R. W., STRICKLAND W. N. Purification and characterization of a TPN-specific glutamic acid dehydrogenase Neurospora crassa. Arch Biochem Biophys. 1963 Jul;102:66–76. doi: 10.1016/0003-9861(63)90321-7. [DOI] [PubMed] [Google Scholar]
  3. Bachofen R., Neeracher H. Glutamatdehydrogenase im photosynthetischen Bakterium Rhodospirillum rubrum. Arch Mikrobiol. 1968;60(3):235–245. [PubMed] [Google Scholar]
  4. Corman L., Prescott L. M., Kaplan N. O. Purification and kinetic characteristics of dogfish liver glutamate dehydrogenase. J Biol Chem. 1967 Apr 10;242(7):1383–1390. [PubMed] [Google Scholar]
  5. DAVIS B. J. DISC ELECTROPHORESIS. II. METHOD AND APPLICATION TO HUMAN SERUM PROTEINS. Ann N Y Acad Sci. 1964 Dec 28;121:404–427. doi: 10.1111/j.1749-6632.1964.tb14213.x. [DOI] [PubMed] [Google Scholar]
  6. DENNEN D. W., NIEDERPRUEM D. J. CONTROL OF GLUTAMATE DEHYDROGENASE IN THE BASIDIOMYCETE SCHIZOPHYLLUM COMMUNE. Life Sci. 1965 Jan;4:93–98. doi: 10.1016/0024-3205(65)90039-1. [DOI] [PubMed] [Google Scholar]
  7. Epstein I., Grossowicz N. Prototrophic thermophilic bacillus: isolation, properties, and kinetics of growth. J Bacteriol. 1969 Aug;99(2):414–417. doi: 10.1128/jb.99.2.414-417.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. FRIEDEN C. The molecular weight of chicken-liver glutamate dehydrogenase. Biochim Biophys Acta. 1962 Aug 13;62:421–423. doi: 10.1016/0006-3002(62)90274-3. [DOI] [PubMed] [Google Scholar]
  9. Hooper A. B., Hansen J., Bell R. Characterization of glutamate dehydrogenase from the ammonia-oxidizing chemoautotroph Nitrosomonas europaea. J Biol Chem. 1967 Jan 25;242(2):288–296. [PubMed] [Google Scholar]
  10. Joseph A. A., Wixon R. L. Ammonia incorporation in Hydrogenomonas eutropha. Biochim Biophys Acta. 1970 Feb 24;201(2):295–299. doi: 10.1016/0304-4165(70)90303-x. [DOI] [PubMed] [Google Scholar]
  11. KATO K., KOIKE S., YAMADA K., YAMADA H., TANAKA S. Di- and triphosphopyridine nucleotide linked glutamic dehydrogenases of Piricularia oryzae and their behaviors in glutamate media. Arch Biochem Biophys. 1962 Aug;98:346–347. doi: 10.1016/0003-9861(62)90195-9. [DOI] [PubMed] [Google Scholar]
  12. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  13. LéJohn H. B., McCrea B. E. Evidence for two species of glutamate dehydrogenases in Thiobacillus novellus. J Bacteriol. 1968 Jan;95(1):87–94. doi: 10.1128/jb.95.1.87-94.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. OLSON J. A., ANFINSEN C. B. The crystallization and characterization of L-glutamic acid dehydrogenase. J Biol Chem. 1952 May;197(1):67–79. [PubMed] [Google Scholar]
  15. SANWAL B. D., LATA M. The occurrence of two different glutamic dehydrogenases in Neurospora. Can J Microbiol. 1961 Jun;7:319–328. doi: 10.1139/m61-039. [DOI] [PubMed] [Google Scholar]
  16. Shiio I., Ozaki H. Regulation of nicotinamide adenine dinucleotide phosphate-specific glutamate dehydrogenase from Brevibacterium flavum, a glutamate-producing bacterium. J Biochem. 1970 Nov;68(5):633–647. doi: 10.1093/oxfordjournals.jbchem.a129397. [DOI] [PubMed] [Google Scholar]
  17. Sund H., Burchard W. Sedimentation coefficient and molecular weight of beef liver glutamate dehydrogenase at the microgram and the milligram level. Eur J Biochem. 1968 Nov;6(2):202–206. doi: 10.1111/j.1432-1033.1968.tb00438.x. [DOI] [PubMed] [Google Scholar]
  18. Winnacker E. L., Barker H. A. Purification and properties of a NAD-dependent glutamate dehydrogenase from Clostridium SB4. Biochim Biophys Acta. 1970 Aug 15;212(2):225–242. doi: 10.1016/0005-2744(70)90203-2. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES