Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1973 Jul;115(1):35–42. doi: 10.1128/jb.115.1.35-42.1973

Metabolism of the Pyridine Nucleotides Involved in Nicotinamide Adenine Dinucleotide Biosynthesis by Clostridium butylicum

Luka B Kasǎrov 1, Albert G Moat 1
PMCID: PMC246208  PMID: 4352177

Abstract

In order to elucidate the mechanism of the accumulation of considerable amounts of free nicotinic acid (NA) in the culture medium of Clostridium butylicum, this organism was investigated with regard to its ability to metabolize nicotinamide adenine dinucleotide (NAD) and its immediate biosynthetic precursors, nicotinic acid mononucleotide (NAMN) and nicotinic acid adenine dinucleotide (deamido-NAD). Cell-free extracts of C. butylicum were found to degrade NAMN and deamido-NAD to NA. NAMN, in the presence of adenosine triphosphate (ATP), was converted to deamido-NAD, but only at high concentrations of ATP (20 mM) was significant synthetic activity observed in competition with NAMN degradation. Degradation of both NAMN and deamido-NAD was activated by ATP at concentrations of 5 and 10 mm. Anaerobiosis markedly enhanced the degradation of the nucleotides. The data indicate that the synthesis of NAMN and deamido-NAD prevails over their degradation only in the presence of high concentrations of ATP. NAD was degraded to nicotinamide mononucleotide (NMN) by a pyrophosphatase. Phosphate markedly inhibited both the deamido-NAD and NAD pyrophosphatases. Under anaerobic conditions there was practically no further degradation of NMN to NA, whereas barely measurable amounts of NA were formed under aerobic conditions. All of these observations suggest that, under the given conditions of anaerobiosis and physiological phosphate concentrations, there is very little degradation of NAD to NMN and practically no degradation to NA by C. butylicum. Thus, NAD represents an insignificant source of the NA accumulated in the culture medium. The intermediates in the biosynthetic pathway (NAMN and deamido-NAD) have been shown to be the major source of the NA which is accumulated by C. butylicum.

Full text

PDF
35

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andreoli A. J., Grover T., Gholson R. K., Matney T. S. Evidence for a functional pyridine nucleotide cycle in Escherichia coli. Biochim Biophys Acta. 1969 Dec 30;192(3):539–541. doi: 10.1016/0304-4165(69)90408-5. [DOI] [PubMed] [Google Scholar]
  2. Andreoli A. J., Okita T. W., Bloom R., Grover T. A. The pyridine nucleotide cycle: presence of a nicotinamide mononucleotide-specific glycohydrolase in Escherichia coli. Biochem Biophys Res Commun. 1972 Oct 6;49(1):264–269. doi: 10.1016/0006-291x(72)90039-3. [DOI] [PubMed] [Google Scholar]
  3. Calbreath D. F., Joshi J. G. Inhibition of nicotinamidase by nicotinamide adenine dinucleotide. J Biol Chem. 1971 Jul 10;246(13):4334–4339. [PubMed] [Google Scholar]
  4. GHOLSON R. K., KORI J. ENZYME REPRESSION IN THE REGULATION OF NICOTINAMIDE ADENINE DINUCLEOTIDE BIOSYNTHESIS IN BACILLUS SUBTILIS. J Biol Chem. 1964 Jul;239:PC2399–PC2399. [PubMed] [Google Scholar]
  5. GOPINATHAN K. P., SIRSI M., RAMAKRISHNAN T. Nicotin-amide-adenine nucleotides of Mycobacterium tuberculosis H37Rv. Biochem J. 1963 May;87:444–448. doi: 10.1042/bj0870444. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Gopinathan K. P., Sirsi M., Vaidyanathan C. S. Nicotinamide-adenine dinucleotide glycohydrolase of Mycobacterium tuberculosis H37Rv. Biochem J. 1964 May;91(2):277–282. doi: 10.1042/bj0910277. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Iizuka M., Mizuno D. Turnover of NAD in bacteria. Biochim Biophys Acta. 1967 Nov 28;148(2):320–327. doi: 10.1016/0304-4165(67)90126-2. [DOI] [PubMed] [Google Scholar]
  8. Isquith A. J., Moat A. G. Biosynthesis of NAD and nicotinic acid by Clostridium butylicum. Biochem Biophys Res Commun. 1966 Mar 8;22(5):565–571. doi: 10.1016/0006-291x(66)90312-3. [DOI] [PubMed] [Google Scholar]
  9. JOSHI J. G., HANDLER P. Purification and properties of nicotinamidase from Torula cremoris. J Biol Chem. 1962 Mar;237:929–935. [PubMed] [Google Scholar]
  10. KONNO K., KURZMANN R., BIRD K. T. The metabolism of nicotinic acid in Mycobacteria: a method for differentiating tubercle bacilli of human origin from other Mycobacteria. Am Rev Tuberc. 1957 Apr;75(4):529–537. doi: 10.1164/artpd.1957.75.4.529. [DOI] [PubMed] [Google Scholar]
  11. KONNO K. New chemical method to differentiate human-type tubercle bacilli from other mycobacteria. Science. 1956 Nov 16;124(3229):985–985. doi: 10.1126/science.124.3229.985. [DOI] [PubMed] [Google Scholar]
  12. Kasărov L. B., Moat A. G. Metabolism of nicotinamide adenine dinucleotide in human and bovine strainsof Mycobacterium tuberculosis. J Bacteriol. 1972 May;110(2):600–603. doi: 10.1128/jb.110.2.600-603.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  14. Olivera B. M., Lehman I. R. Diphosphopyridine nucleotide: a cofactor for the polynucleotide-joining enzyme from Escherichia coli. Proc Natl Acad Sci U S A. 1967 Jun;57(6):1700–1704. doi: 10.1073/pnas.57.6.1700. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. PREISS J., HANDLER P. Biosynthesis of diphosphopyridine nucleotide. I. Identification of intermediates. J Biol Chem. 1958 Aug;233(2):488–492. [PubMed] [Google Scholar]
  16. PREISS J., HANDLER P. Biosynthesis of diphosphopyridine nucleotide. II. Enzymatic aspects. J Biol Chem. 1958 Aug;233(2):493–500. [PubMed] [Google Scholar]
  17. SARMA D. S., RAJALAKSHMI S., SARMA P. S. Deamidation of nicotinamide and NMN. Biochem Biophys Res Commun. 1961 Dec 20;6:389–393. doi: 10.1016/0006-291x(61)90151-6. [DOI] [PubMed] [Google Scholar]
  18. SWARTZ M. N., KAPLAN N. O., LAMBORG M. F. A heat-activated diphosphopyridine nucleotide pyrophosphatase from Proteus vulgaris. J Biol Chem. 1958 Jun;232(2):1051–1063. [PubMed] [Google Scholar]
  19. Zimmerman S. B., Oshinsky C. K. Enzymatic joining of deoxyribonucleic acid strands. 3. Further purification of the deoxyribonucleic acid ligase from Escherichia coli and multiple forms of the purified enzyme. J Biol Chem. 1969 Sep 10;244(17):4689–4695. [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES