Abstract
The concentration of adenosine 3′,5′-monophosphate (cyclic AMP) and the activity of adenylate cyclase were determined for the first time in conjuncation with cyclic 3′,5′-nucleotide phosphodiesterase (phosphodiesterase) during the growth cycle of Tetrahymena pyriformis. High levels of cyclic AMP observed during early exponential and late stationary phases were associated with elevated adenylate cyclase and decreased phosphodiesterase activities. Adenylate cyclase and cyclic AMP were decreased and phosphodiesterase was increased in cells grown in glucose-supplemented medium. In contrast to findings in mammalian liver, cyclic AMP was decreased during active gluconeogenesis in Tetrahymena. This suggests a different modulation of carbohydrate metabolism in the two species. The results illustrate that both the content of cyclic AMP and its action as a regulatory agent in Tetrahymena are uniquely suited to the metabolism of this organism.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BUTCHER R. W., SUTHERLAND E. W. Adenosine 3',5'-phosphate in biological materials. I. Purification and properties of cyclic 3',5'-nucleotide phosphodiesterase and use of this enzyme to characterize adenosine 3',5'-phosphate in human urine. J Biol Chem. 1962 Apr;237:1244–1250. [PubMed] [Google Scholar]
- Barkley D. S. Adenosine-3',5'-phosphate: identification as acrasin in a species of cellular slime mold. Science. 1969 Sep 12;165(3898):1133–1134. doi: 10.1126/science.165.3898.1133. [DOI] [PubMed] [Google Scholar]
- Blum J. J. An adrenergic control system in Tetrahymena. Proc Natl Acad Sci U S A. 1967 Jul;58(1):81–88. doi: 10.1073/pnas.58.1.81. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Blum J. J. On the regulation of glycogen metabolism in Tetrahymena. Arch Biochem Biophys. 1970 Mar;137(1):65–74. doi: 10.1016/0003-9861(70)90411-x. [DOI] [PubMed] [Google Scholar]
- Brooker G., Thomas L. J., Jr, Appleman M. M. The assay of adenosine 3',5'-cyclic monophosphate and guanosine 3',5'-cyclic monophosphate in biological materials by enzymatic radioisotopic displacement. Biochemistry. 1968 Dec;7(12):4177–4181. doi: 10.1021/bi00852a006. [DOI] [PubMed] [Google Scholar]
- Chase L. R., Aurbach G. D. Renal adenyl cyclase: anatomically separate sites for parathyroid hormone and vasopressin. Science. 1968 Feb 2;159(3814):545–547. doi: 10.1126/science.159.3814.545. [DOI] [PubMed] [Google Scholar]
- Exton J. H., Mallette L. E., Jefferson L. S., Wong E. H., Friedmann N., Park C. R. Role of adenosine 3',5'-monophosphate in the control of gluconeogenesis. Am J Clin Nutr. 1970 Jul;23(7):993–1003. doi: 10.1093/ajcn/23.7.993. [DOI] [PubMed] [Google Scholar]
- Janakidevi K., Dewey V. C., Kidder G. W. Serotonin in protozoa. Arch Biochem Biophys. 1966 Mar;113(3):758–759. doi: 10.1016/0003-9861(66)90259-1. [DOI] [PubMed] [Google Scholar]
- Janakidevi K., Dewey V. C., Kidder G. W. The biosynthesis of catecholamines in two genera of protozoa. J Biol Chem. 1966 Jun 10;241(11):2576–2578. [PubMed] [Google Scholar]
- Jefferson L. S., Exton J. H., Butcher R. W., Sutherland E. W., Park C. R. Role of adenosine 3',5'-monophosphate in the effects of insulin and anti-insulin serum on liver metabolism. J Biol Chem. 1968 Mar 10;243(5):1031–1038. [PubMed] [Google Scholar]
- Jost J. P., Hsie A., Hughes S. D., Ryan L. Role of cyclic adenosine 3',5'-monophosphate in the induction of hepatic enzymes. I. Kinetics of the induction of rat liver serine dehydratase by cyclic adenosine 3',5'-monophosphate. J Biol Chem. 1970 Jan 25;245(2):351–357. [PubMed] [Google Scholar]
- MAKMAN R. S., SUTHERLAND E. W. ADENOSINE 3',5'-PHOSPHATE IN ESCHERICHIA COLI. J Biol Chem. 1965 Mar;240:1309–1314. [PubMed] [Google Scholar]
- Morris D. L. Quantitative Determination of Carbohydrates With Dreywood's Anthrone Reagent. Science. 1948 Mar 5;107(2775):254–255. doi: 10.1126/science.107.2775.254. [DOI] [PubMed] [Google Scholar]
- Pastan I., Perlman R. Cyclic adenosine monophosphate in bacteria. Science. 1970 Jul 24;169(3943):339–344. doi: 10.1126/science.169.3943.339. [DOI] [PubMed] [Google Scholar]
- Peterkofsky A., Gazdar C. Glucose and the metabolism of adenosine 3':5'-cyclic monophosphate in Escherichia coli. Proc Natl Acad Sci U S A. 1971 Nov;68(11):2794–2798. doi: 10.1073/pnas.68.11.2794. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rosett T., Smith J. G., Jr, Matsuo I., Bailey P. A., Smith D. B., Surakiat S. The quantitative separation of 3',5'-cyclic adenosine monophosphate, adenosine-5'-monophosphate, adenosine-5'-diphosphate, and adenosine-5'-triphosphate by ion-exchange chromatography on diethylaminoethyl sephadex. J Chromatogr. 1970 Jun 3;49(2):308–312. doi: 10.1016/s0021-9673(00)93639-2. [DOI] [PubMed] [Google Scholar]
- Shrago E., Brech W., Templeton K. Glyconeogenesis in Tetrahymena pyriformis. Relationship of enzyme adaptation to the carbon pathway. J Biol Chem. 1967 Sep 25;242(18):4060–4066. [PubMed] [Google Scholar]
- Shrago E., Lardy H. A. Paths of carbon in gluconeogenesis and lipogenesis. II. Conversion of precursors to phosphoenolpyruvate in liver cytosol. J Biol Chem. 1966 Feb 10;241(3):663–668. [PubMed] [Google Scholar]
- Sutherland E. W., Robison G. A. The role of cyclic AMP in the control of carbohydrate metabolism. Diabetes. 1969 Dec;18(12):797–819. doi: 10.2337/diab.18.12.797. [DOI] [PubMed] [Google Scholar]
- Wicks W. D. Induction of hepatic enzymes by adenosine 3',5'-monophosphate in organ culture. J Biol Chem. 1969 Jul 25;244(14):3941–3950. [PubMed] [Google Scholar]