Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1973 Aug;115(2):543–551. doi: 10.1128/jb.115.2.543-551.1973

Quantitative Measurement of the Effectiveness of Unsaturated Fatty Acids Required for the Growth of Saccharomyces cerevisiae

Eugene D Barber 1, William E M Lands 1
PMCID: PMC246281  PMID: 4579872

Abstract

The growth response of a mutant of Saccharomyces cerevisiae which is unable to synthesize unsaturated fatty acids has been measured in the presence of variable concentrations of exogenous unsaturated fatty acids. Final cell yields, doubling times, and lag times were all found to vary as a function of the initial concentration of the added unsaturated acid. The cell yield was found to be a convenient quantitative measurement to use in comparing the effectiveness of various unsaturated acids. Values for the acids ranged from 1.7 to 11 cells per femtomole with values for oleate and palmitoleate at 2.7 and 4.3 cells per femtomole, respectively. In general, the effectiveness of unsaturated acids was found to increase with an increasing number of double bonds. Saturated fatty acids of a chain length of 5 to 18 carbon atoms were completely ineffective. The varied efficiencies of different unsaturated fatty acids indicate that unsaturation per se was not the basis of the nutritional requirement and indicate certain acids that would be useful in further studies of the role of unsaturated acids in cell function.

Full text

PDF
543

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BAUCHOP T., ELSDEN S. R. The growth of micro-organisms in relation to their energy supply. J Gen Microbiol. 1960 Dec;23:457–469. doi: 10.1099/00221287-23-3-457. [DOI] [PubMed] [Google Scholar]
  2. Clark-Walker G. D., Linnane A. W. The biogenesis of mitochondria in Saccharomyces cerevisiae. A comparison between cytoplasmic respiratory-deficient mutant yeast and chlormaphenicol-inhibited wild type cells. J Cell Biol. 1967 Jul;34(1):1–14. doi: 10.1083/jcb.34.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Esfahani M., Barnes E. M., Jr, Wakil S. J. Control of fatty acid composition in phospholipids of Escherichia coli: response to fatty acid supplements in a fatty acid auxotroph. Proc Natl Acad Sci U S A. 1969 Nov;64(3):1057–1064. doi: 10.1073/pnas.64.3.1057. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Esfahani M., Ioneda T., Wakil S. J. Studies on the control of fatty acid metabolism. 3. Incorporation of fatty acids into phospholipids and regulation of fatty acid synthetase of Escherichia coli. J Biol Chem. 1971 Jan 10;246(1):50–56. [PubMed] [Google Scholar]
  5. Fox C. F. A lipid requirement for induction of lactose transport in Escherichia coli. Proc Natl Acad Sci U S A. 1969 Jul;63(3):850–855. doi: 10.1073/pnas.63.3.850. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Gilvarg C., Levin Y. Response of Escherichia coli to ornithyl peptides. J Biol Chem. 1972 Jan 25;247(2):543–549. [PubMed] [Google Scholar]
  7. Hunter K., Rose A. H. Lipid composition of Saccharomyces cerevisiae as influenced by growth temperature. Biochim Biophys Acta. 1972 Apr 18;260(4):639–653. doi: 10.1016/0005-2760(72)90013-6. [DOI] [PubMed] [Google Scholar]
  8. JOHNSTON J. A., GHADIALLY R. C., ROBERTS R. N., FUHR B. W. Myo-Inositol activity of oxidtion products derived from myo-inositol. Arch Biochem Biophys. 1962 Dec;99:537–538. doi: 10.1016/0003-9861(62)90306-5. [DOI] [PubMed] [Google Scholar]
  9. Jollow D., Kellerman G. M., Linnane A. W. The biogenesis of mitochondria. 3. The lipid composition of aerobically and anaerobically grown Saccharomyces cerevisiae as related to the membrane systems of the cells. J Cell Biol. 1968 May;37(2):221–230. doi: 10.1083/jcb.37.2.221. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. KATCHMAN B. J., FETTY W. O. Phosphorus metabolism in growing cultures of Saccharomyces cerevisiae. J Bacteriol. 1955 Jun;69(6):607–615. doi: 10.1128/jb.69.6.607-615.1955. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kates M. Bacterial lipids. Adv Lipid Res. 1964;2:17–90. [PubMed] [Google Scholar]
  12. Keith A. D., Resnick M. R., Haley A. B. Fatty acid desaturase mutants of Saccharomyces cerevisiae. J Bacteriol. 1969 May;98(2):415–420. doi: 10.1128/jb.98.2.415-420.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kormancíkov'A V., Kovác L., Vidová M. Oxidative phosphorylation in yeast. V. Phosphorylation efficiencies in growing cells determined from molar growth yields. Biochim Biophys Acta. 1969 May;180(1):9–17. doi: 10.1016/0005-2728(69)90188-1. [DOI] [PubMed] [Google Scholar]
  14. Korn E. D. Current concepts of membrane structure and function. Fed Proc. 1969 Jan-Feb;28(1):6–11. [PubMed] [Google Scholar]
  15. Lands W. E., Blank M. L., Nutter L. J., Privett O. S. A comparison of acyltransferase activities in vitro with the distribution of fatty acids in lecithins and triglycerides in vivo. Lipids. 1966 May;1(3):224–229. doi: 10.1007/BF02531877. [DOI] [PubMed] [Google Scholar]
  16. Lands W. E., Hart P. The control of fatty acid composition in glycerolipids. J Am Oil Chem Soc. 1966 May;43(5):290–295. doi: 10.1007/BF02609676. [DOI] [PubMed] [Google Scholar]
  17. Longley R. P., Rose A. H., Knights B. A. Composition of the protoplast membrane from Saccharomyces cerevisiae. Biochem J. 1968 Jul;108(3):401–412. doi: 10.1042/bj1080401. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Mavis R. D., Vagelos P. R. The effect of phospholipid fatty acid composition in membranous enzymes in Escherichia coli. J Biol Chem. 1972 Feb 10;247(3):652–659. [PubMed] [Google Scholar]
  19. McIlwain H., Hughes D. E. Biochemical characterization of the actions of chemotherapeutic agents: 2. A reaction of haemolytic streptococci, involving pantothenate-usage, inhibited by pantoyltaurine, and associated with carbohydrate metabolism. Biochem J. 1944;38(2):187–195. doi: 10.1042/bj0380187. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Okuyama H., Lands W. E., Gunstone F. D., Barve J. A. Selective transfers of trans-ethylenic acids by acyl coenzyme A. Phospholipid acyltransferases. Biochemistry. 1972 Nov 7;11(23):4392–4398. doi: 10.1021/bi00773a028. [DOI] [PubMed] [Google Scholar]
  21. Overath P., Hill F. F., Lamnek-Hirsch I. Biogenesis of E. coli membrane: evidence for randomization of lipid phase. Nat New Biol. 1971 Dec 29;234(52):264–267. doi: 10.1038/newbio234264a0. [DOI] [PubMed] [Google Scholar]
  22. Overath P., Schairer H. U., Stoffel W. Correlation of in vivo and in vitro phase transitions of membrane lipids in Escherichia coli. Proc Natl Acad Sci U S A. 1970 Oct;67(2):606–612. doi: 10.1073/pnas.67.2.606. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Painter P. R., Marr A. G. Mathematics of microbial populations. Annu Rev Microbiol. 1968;22:519–548. doi: 10.1146/annurev.mi.22.100168.002511. [DOI] [PubMed] [Google Scholar]
  24. Pfleger R. C., Anderson N. G., Snyder F. Lipid class and fatty acid composition of rat liver plasma membranes isolated by zonal centrifugation. Biochemistry. 1968 Aug;7(8):2826–2833. doi: 10.1021/bi00848a019. [DOI] [PubMed] [Google Scholar]
  25. Proudlock J. W., Haslam J. M., Linnane A. W. Biogenesis of mitochondria. 19. The effects of unsaturated fatty acid depletion on the lipid composition and energy metabolism of a fatty acid desaturase mutant of Saccharomyces cerevisiae. J Bioenerg. 1971 Dec;2(5):327–349. doi: 10.1007/BF01963829. [DOI] [PubMed] [Google Scholar]
  26. Resnick M. A., Mortimer R. K. Unsaturated fatty acid mutants of Saccharomyces cerevisiae. J Bacteriol. 1966 Sep;92(3):597–600. doi: 10.1128/jb.92.3.597-600.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Schairer H. U., Overath P. Lipids containing trans-unsaturated fatty acids change the temperature characteristic of thiomethylgalactoside accumulation in Escherichia coli. J Mol Biol. 1969 Aug 28;44(1):209–214. doi: 10.1016/0022-2836(69)90416-1. [DOI] [PubMed] [Google Scholar]
  28. Shehata T. E., Marr A. G. Effect of nutrient concentration on the growth of Escherichia coli. J Bacteriol. 1971 Jul;107(1):210–216. doi: 10.1128/jb.107.1.210-216.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Silbert D. F., Ruch F., Vagelos P. R. Fatty acid replacements in a fatty acid auxotroph of Escherichia coli. J Bacteriol. 1968 May;95(5):1658–1665. doi: 10.1128/jb.95.5.1658-1665.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Silbert D. F., Vagelos P. R. Fatty acid mutant of E. coli lacking a beta-hydroxydecanoyl thioester dehydrase. Proc Natl Acad Sci U S A. 1967 Oct;58(4):1579–1586. doi: 10.1073/pnas.58.4.1579. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Tamai Y., Lands W. E., Barve J. A., Gunstone F. D. Selective transfers of acetylenic acids to form lecithins. Biochim Biophys Acta. 1973 Mar 8;296(3):563–571. doi: 10.1016/0005-2760(73)90116-1. [DOI] [PubMed] [Google Scholar]
  32. Waku K., Lands W. E. Control of lecithin biosynthesis in erythrocyte membranes. J Lipid Res. 1968 Jan;9(1):12–18. [PubMed] [Google Scholar]
  33. Wilson G., Fox C. F. Biogenesis of microbial transport systems: evidnce for coupled incorporation of newly synthesized lipids and proteins into membrane. J Mol Biol. 1971 Jan 14;55(1):49–60. doi: 10.1016/0022-2836(71)90280-4. [DOI] [PubMed] [Google Scholar]
  34. Wilson G., Rose S. P., Fox C. F. The effect of membrane lipid unsaturation on glycoside transport. Biochem Biophys Res Commun. 1970 Feb 20;38(4):617–623. doi: 10.1016/0006-291x(70)90625-x. [DOI] [PubMed] [Google Scholar]
  35. Wisnieski B. J., Keith A. D., Resnick M. R. Double-bond requirement in a fatty acid desaturase mutant of Saccharomyces cerevisiae. J Bacteriol. 1970 Jan;101(1):160–165. doi: 10.1128/jb.101.1.160-165.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Wisnieski B. J., Kiyomoto R. K. Fatty acid desaturase mutants of yeast: growth requirements and electron spin resonance spin-label distribution. J Bacteriol. 1972 Jan;109(1):186–195. doi: 10.1128/jb.109.1.186-195.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. van Deenen L. L. Some structural and dynamic aspects of lipids in biological membranes. Ann N Y Acad Sci. 1966 Jul 14;137(2):717–730. doi: 10.1111/j.1749-6632.1966.tb50193.x. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES