Abstract
Growth, amino acid transport, and oxygen consumption of Escherichia coli and Salmonella typhimurium are inhibited by short-chain (C2-C6) but not by medium or long-chain fatty acids (C10-C18) at concentrations at which these processes are completely inhibited in Bacillus subtilis. The resistance of gram-negative organisms is not correlated with their ability to metabolize fatty acids, since an E. coli mutant unable to transport oleic acid is still resistant. However, mutants of both E. coli and S. typhimurium in which the lipopolysaccharide layer does not contain the residues beyond the 2-keto-3-deoxyoctonate core are inhibited by medium (C10) but not by long-chain (C18) fatty acids. Furthermore, removal of a portion of the lipopolysaccharide layer by ethylenediaminetetraacetate treatment renders the organisms sensitive to medium and partially sensitive to long-chain fatty acids. The intact lipopolysaccharide layer of gram-negative organisms apparently screens the cells against medium and long-chain fatty acids and prevents their accumulation on the inner cell membrane (site of amino acid transport) at inhibitory concentrations. These results are relevant to the use of antimicrobial food additives, and they allow the characterization of gram-positive versus gram-negative bacteria and their lipopolysaccharide mutants.
Full text
PDF![869](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dc4d/246330/056873bc50bb/jbacter00349-0163.png)
![870](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dc4d/246330/74922aaf9bda/jbacter00349-0164.png)
![871](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dc4d/246330/75fb8b3fe8a7/jbacter00349-0165.png)
![872](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dc4d/246330/5b95e24916ad/jbacter00349-0166.png)
![873](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dc4d/246330/1ac0e5dc42eb/jbacter00349-0167.png)
![874](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dc4d/246330/aea44bd7543b/jbacter00349-0168.png)
![875](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dc4d/246330/c9ac7df40189/jbacter00349-0169.png)
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ames B. N., Lee F. D., Durston W. E. An improved bacterial test system for the detection and classification of mutagens and carcinogens. Proc Natl Acad Sci U S A. 1973 Mar;70(3):782–786. doi: 10.1073/pnas.70.3.782. [DOI] [PMC free article] [PubMed] [Google Scholar]
- ELBEIN A. D., HEATH E. C. THE BIOSYNTHESIS OF CELL WALL LIPOPOLYSACCHARIDE IN ESCHERICHIA COLI. I. THE BIOCHEMICAL PROPERTIES OF A URIDINE DIPHOSPHATE GALACTOSE 4-EPIMERASELESS MUTANT. J Biol Chem. 1965 May;240:1919–1925. [PubMed] [Google Scholar]
- Freese E., Fortnagel U. Growth and sporulation of Bacillus subtilis mutants blocked in the pyruvate dehydrogenase complex. J Bacteriol. 1969 Sep;99(3):745–756. doi: 10.1128/jb.99.3.745-756.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Freese E., Sheu C. W., Galliers E. Function of lipophilic acids as antimicrobial food additives. Nature. 1973 Feb 2;241(5388):321–325. doi: 10.1038/241321a0. [DOI] [PubMed] [Google Scholar]
- HURWITZ J., FURTH J. J., MALAMY M., ALEXANDER M. The role of deoxyribonucleic acid in ribonucleic acid synthesis. III. The inhibition of the enzymatic synthesis of ribonucleic acid and deoxyribonucleic acid by actinomycin D and proflavin. Proc Natl Acad Sci U S A. 1962 Jul 15;48:1222–1230. doi: 10.1073/pnas.48.7.1222. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Klein K., Steinberg R., Fiethen B., Overath P. Fatty acid degradation in Escherichia coli. An inducible system for the uptake of fatty acids and further characterization of old mutants. Eur J Biochem. 1971 Apr;19(3):442–450. doi: 10.1111/j.1432-1033.1971.tb01334.x. [DOI] [PubMed] [Google Scholar]
- Leive L. Studies on the permeability change produced in coliform bacteria by ethylenediaminetetraacetate. J Biol Chem. 1968 May 10;243(9):2373–2380. [PubMed] [Google Scholar]
- Levy S. B., Leive L. Release from Escherichia coli of a galactosyltransferase complex active in lipopolysaccharide synthesis. J Biol Chem. 1970 Feb 10;245(3):585–594. [PubMed] [Google Scholar]
- Osborn M. J. Structure and biosynthesis of the bacterial cell wall. Annu Rev Biochem. 1969;38:501–538. doi: 10.1146/annurev.bi.38.070169.002441. [DOI] [PubMed] [Google Scholar]
- REPASKE R. Lysis of gram-negative organisms and the role of versene. Biochim Biophys Acta. 1958 Nov;30(2):225–232. doi: 10.1016/0006-3002(58)90044-1. [DOI] [PubMed] [Google Scholar]
- Sheu C. W., Freese E. Effects of fatty acids on growth and envelope proteins of Bacillus subtilis. J Bacteriol. 1972 Aug;111(2):516–524. doi: 10.1128/jb.111.2.516-524.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sheu C. W., Konings W. N., Freese E. Effects of acetate and other short-chain fatty acids on sugar and amino acid uptake of Bacillus subtilis. J Bacteriol. 1972 Aug;111(2):525–530. doi: 10.1128/jb.111.2.525-530.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]