Abstract
Bacterial and plasmid homo- and heteroduplexes have been analyzed with a single-strand specific endonuclease, S1, of Aspergillus oryzae. Under appropriate assay conditions, there was a high degree of correlation between the degree of deoxyribonucleic acid (DNA)-DNA homoduplex formation assessed by the S1 endonuclease and by hydroxyapatite (HA). Heteroduplexes which contain extensive regions of polynucleotide sequences in common are similarly recognized by the S1 endonuclease and HA. In instances where there is little or imperfect complementarity between heterologous DNA strands, the S1 endonuclease and the HA method give slightly different estimates. From DNA duplex thermal stability experiments assayed with the S1 endonuclease, there is preliminary evidence that well-matched sequences identified by the enzyme are not similarly recognized by HA. The assay of homo- and heteroduplexes with the S1 endonuclease permits an accurate, reproducible and rapid determination of polynucleotide sequence relationships and may be seriously considered as a method of choice for survey work and for investigations which require a large number of DNA-DNA hybridization assays.
Full text
PDF![904](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/73ad/246335/2081cccb03dd/jbacter00349-0198.png)
![905](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/73ad/246335/465fd63a9ed3/jbacter00349-0199.png)
![906](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/73ad/246335/bde21e21d160/jbacter00349-0200.png)
![907](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/73ad/246335/9047d8c65db9/jbacter00349-0201.png)
![908](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/73ad/246335/10170045687b/jbacter00349-0202.png)
![909](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/73ad/246335/95055a0a2b2d/jbacter00349-0203.png)
![910](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/73ad/246335/02677fd7ef51/jbacter00349-0204.png)
![911](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/73ad/246335/2c2b24bb0f03/jbacter00349-0205.png)
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ando T. A nuclease specific for heat-denatured DNA in isolated from a product of Aspergillus oryzae. Biochim Biophys Acta. 1966 Jan 18;114(1):158–168. doi: 10.1016/0005-2787(66)90263-2. [DOI] [PubMed] [Google Scholar]
- Brenner D. J., Falkow S. Genetics of the Enterobacteriaceae. C. Molecular relationships among members of the Enterobacteriaceae. Adv Genet. 1971;16:81–118. doi: 10.1016/s0065-2660(08)60355-7. [DOI] [PubMed] [Google Scholar]
- Brenner D. J., Fanning G. R., Johnson K. E., Citarella R. V., Falkow S. Polynucleotide sequence relationships among members of Enterobacteriaceae. J Bacteriol. 1969 May;98(2):637–650. doi: 10.1128/jb.98.2.637-650.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brenner D. J., Fanning G. R., Rake A. V., Johnson K. E. Batch procedure for thermal elution of DNA from hydroxyapatite. Anal Biochem. 1969 Apr 4;28(1):447–459. doi: 10.1016/0003-2697(69)90199-7. [DOI] [PubMed] [Google Scholar]
- Clewell D. B., Helinski D. R. Supercoiled circular DNA-protein complex in Escherichia coli: purification and induced conversion to an opern circular DNA form. Proc Natl Acad Sci U S A. 1969 Apr;62(4):1159–1166. doi: 10.1073/pnas.62.4.1159. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Denhardt D. T. A membrane-filter technique for the detection of complementary DNA. Biochem Biophys Res Commun. 1966 Jun 13;23(5):641–646. doi: 10.1016/0006-291x(66)90447-5. [DOI] [PubMed] [Google Scholar]
- Gillespie D., Spiegelman S. A quantitative assay for DNA-RNA hybrids with DNA immobilized on a membrane. J Mol Biol. 1965 Jul;12(3):829–842. doi: 10.1016/s0022-2836(65)80331-x. [DOI] [PubMed] [Google Scholar]
- Guerry P., Falkow S. Polynucleotide sequence relationships among some bacterial plasmids. J Bacteriol. 1971 Jul;107(1):372–374. doi: 10.1128/jb.107.1.372-374.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
- KORN D., WEISSBACH A. Thymineless induction in Escherichia coli K12 (lambda). Biochim Biophys Acta. 1962 Nov 26;61:775–790. doi: 10.1016/0926-6550(62)90060-9. [DOI] [PubMed] [Google Scholar]
- McConaughy B. L., McCarthy B. J. Related base sequences in the DNA of simple and complex organisms. VI. The extent of base sequence divergence among the DNAs of various rodents. Biochem Genet. 1970 Jun;4(3):425–446. doi: 10.1007/BF00485758. [DOI] [PubMed] [Google Scholar]
- Shishido K., Ando T. Estimation of the double-helical content in various single-stranded nucleic acids by treatment with a single strand-specific nuclease. Biochim Biophys Acta. 1972 Dec 22;287(3):477–484. doi: 10.1016/0005-2787(72)90292-4. [DOI] [PubMed] [Google Scholar]
- Silver R. P., Falkow S. Specific labeling and physical characterization of R-factor deoxyribonucleic acid in Escherichia coli. J Bacteriol. 1970 Oct;104(1):331–339. doi: 10.1128/jb.104.1.331-339.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sutton W. D. A crude nuclease preparation suitable for use in DNA reassociation experiments. Biochim Biophys Acta. 1971 Jul 29;240(4):522–531. doi: 10.1016/0005-2787(71)90709-x. [DOI] [PubMed] [Google Scholar]
- Vogt V. M. Purification and further properties of single-strand-specific nuclease from Aspergillus oryzae. Eur J Biochem. 1973 Feb 15;33(1):192–200. doi: 10.1111/j.1432-1033.1973.tb02669.x. [DOI] [PubMed] [Google Scholar]