Abstract
Kinetics of radioactive iron transport from three structurally different secondary hydroxamate-iron chelates (schizokinen-iron, produced by Bacillus megaterium ATCC 19213; Desferal-iron, produced by an actinomycete; and aerobactin-iron, produced by Aerobacter aerogenes 62-1) revealed that B. megaterium SK11 (a mutant which cannot synthesize schizokinen) has a specific transport system for utilization of ferric hydroxamates with a recognition capacity based on the chemical structure of the hydroxamate. Both Desferal and schizokinen enhanced iron uptake in this organism; however, Desferal-iron delivered only one-sixth the level of iron incorporated from the schizokinen-iron chelate. Desferal-iron did not generate the rapid rates of iron transport noted with schizokinen-iron at elevated iron concentrations. Assays containing large excesses of either iron-free Desferal or iron-free schizokinen suggested that the iron-free hydroxamate may compete with the ferric hydroxamate for acceptance by the transport system although the system has greater affinity for the iron chelate. Aerobactin-iron did not stimulate iron uptake in B. megaterium SK11 and aerobactin inhibited growth of this organism, indicating that B. megaterium SK11 cannot efficiently process the aerobactin-iron chelate.
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- Arceneaux J. L., Lankford C. E. A schizokinen (siderochrome) auxotroph of Bacillus megaterium induced with N-methyl-N'-nitro-N-nitrosoguanidine. Biochem Biophys Res Commun. 1966 Aug 12;24(3):370–375. doi: 10.1016/0006-291x(66)90166-5. [DOI] [PubMed] [Google Scholar]
- Byers B. R., Powell M. V., Lankford C. E. Iron-chelating hydroxamic acid (schizokinen) active in initiation of cell division in Bacillus megaterium. J Bacteriol. 1967 Jan;93(1):286–294. doi: 10.1128/jb.93.1.286-294.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Davis W. B., Byers B. R. Active transport of iron in Bacillus megaterium: role of secondary hydroxamic acids. J Bacteriol. 1971 Aug;107(2):491–498. doi: 10.1128/jb.107.2.491-498.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Davis W. B., McCauley M. J., Byers B. R. Iron requirements and aluminum sensitivity of an hydroxamic acid-requiring strain of Bacillus megaterium. J Bacteriol. 1971 Feb;105(2):589–594. doi: 10.1128/jb.105.2.589-594.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Downer D. N., Davis W. B., Byers B. R. Repression of phenolic acid-synthesizing enzymes and its relation to iron uptake in Bacillus subtilis. J Bacteriol. 1970 Jan;101(1):181–187. doi: 10.1128/jb.101.1.181-187.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Emery T. Role of ferrichrome as a ferric ionophore in Ustilago sphaerogena. Biochemistry. 1971 Apr 13;10(8):1483–1488. doi: 10.1021/bi00784a033. [DOI] [PubMed] [Google Scholar]
- Gibson F., Magrath D. I. The isolation and characterization of a hydroxamic acid (aerobactin) formed by Aerobacter aerogenes 62-I. Biochim Biophys Acta. 1969 Nov 18;192(2):175–184. doi: 10.1016/0304-4165(69)90353-5. [DOI] [PubMed] [Google Scholar]
- Haydon A. H., Davis W. B., Arceneaux J. L., Gentry G. A., Byers B. R. Simplified method for liquid scintillation counting of 55Fe using secondary hydroxamic acids as chelating agents. Biochim Biophys Acta. 1972 Jun 26;273(1):1–4. doi: 10.1016/0304-4165(72)90184-5. [DOI] [PubMed] [Google Scholar]
- Luckey M., Pollack J. R., Wayne R., Ames B. N., Neilands J. B. Iron uptake in Salmonella typhimurium: utilization of exogenous siderochromes as iron carriers. J Bacteriol. 1972 Sep;111(3):731–738. doi: 10.1128/jb.111.3.731-738.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mullis K. B., Pollack J. R., Neilands J. B. Structure of schizokinen, an iron-transport compound from Bacillus megaterium. Biochemistry. 1971 Dec 21;10(26):4894–4898. doi: 10.1021/bi00802a010. [DOI] [PubMed] [Google Scholar]
- Neilands J. B. Hydroxamic acids in nature. Science. 1967 Jun 16;156(3781):1443–1447. doi: 10.1126/science.156.3781.1443. [DOI] [PubMed] [Google Scholar]
- Peters W. J., Warren R. A. The mechanism of iron uptake in Bacillus subtilis. Can J Microbiol. 1970 Dec;16(12):1285–1291. doi: 10.1139/m70-214. [DOI] [PubMed] [Google Scholar]
- Ratledge C. Transport of iron by mycobactin in Mycobacterium smegmatis. Biochem Biophys Res Commun. 1971 Nov;45(4):856–862. doi: 10.1016/0006-291x(71)90417-7. [DOI] [PubMed] [Google Scholar]
- Zimmermann W., Knüsel F. Permeability of Staphylococcus aureus to the Sideromycin antibiotic A 22,765. Arch Mikrobiol. 1969 Oct;68(2):107–112. doi: 10.1007/BF00413870. [DOI] [PubMed] [Google Scholar]